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1. INTRODUCTION

In 1988 the first regional FAO/IOC/UNEP Training Workshop on the
Statistical Treatment and Interpretation of Marine Community Data took place
at the Marine Biological Station in Piran, Yugoslavia, from 14-24 June, in the
framework of the Long-term Programme for Pollution Monitoring and Research in
the Mediterranean Sea (MED POL - Phase II). Owing to the nature of the
workshop (lectures and practical sessions with personal computers}), the number
of participants that could be accepted was limited. In view of the large
number of applications for participation in the workshop which could not be
satisfied, it was decided by the relevant UN Agencies to hold two workshops
at a national level in the countries from which the majority of applications
came from namely, Greece and Yugoslavia, in 1989 and 1990 respectively. The
final workshop in the series was then planned for 1991, at a regional level,
and it is this workshop that is the subject of this report.

The present workshop took place at the Arab Maritime Transport Academy
(AMTA), Alexandria, Egypt, from 9-19 December 1991. It was attended by 21
participants from a diverse range of countries bordering the Mediterranean
(Egypt, Italy, Libya, Morocco, Spain, Tunisia and Turkey). A full list of
participants appears in Annex I. The lectures were principally given by
Professor J.S. Gray {University of Oslo, Norway) and Drs. K.R. Clarke and R.M.
Warwick (PTymouth Marine Laboratory (PML), UK). Mr. M.R. Carr (PML) was
responsibie for supervising the preparation of the multivariate statistical
software; he and Dr. E. Papathanassiou (National Centre for Marine Research,
Athens) acted as demonstrators for the practical sessions.

2. PROGRAMME OF THE WORKSHOP

The workshop covered the statistical treatment of population and
community data (species abundances/biomass), arising in studies of the marine
environment. In particular, the emphasis was on statistical analysis of the
biological effects of pollutants, the workshop being conducted through
lectures and practical computing sessions invoiving a range of data sets drawn
from the Titerature.

The methods covered ranged from "classical" univariate statistics
applied to, for example, population abundances and diversity indices, to
multivariate clustering and ordination techniques, and other graphical
methods, applied to large arrays of samples/species data. Practical work on
univariate statistics used the STATGRAPHICS package, and multivariate analyses
were undertaken using the package PRIMER (Plymouth Routines In Multivariate
Ecological Research), a suite of PC programs written at the Plymouth Marine
Laboratory, UK.

The Tectures and practical sessions drew from the experience of the
benthic community studies components of research workshops mounted by I0C/GEEP
(the Intergovernmental Oceanographic Commission’s Group of Experts on the
Effects of Pollutants), in particular workshops held in Oslo, August 1986,
Bermuda, September 1988 and Bremerhaven, March 1990.

The lectures and practical sessions (see Annex II} in the first half
of the workshop were meant as an introductory (or refresher) course for
participants on basic (univariate) statistics, so that all would be at



comparable levels when undertaking the secocnd (multivariate) part of the
course. The emphasis given here was not to statistical theory but rather to
the practicalities that marine ecologists face. Questions treated covered such
problems as: how many samples? or how large a sample should one take?, etc.
To answer these questions requires an understanding of some basic statistical
terms such as variance, standard deviation and standard error, confidence
limits, transformations etc. The introductory course covered these topics and
then demonstrated how to compare univariate samples using Student’s ‘t’ test
and the analysis of variance, and the relationships between samples using
regression and correlation analyses.

The lecture material which followed covered:

a) the use of multivariate methods (clustering and ordination) to
represent graphically the similarities between species abundances
(or biomass) observed in a set of samples;

b) the demonstration of statistically significant differences in
species composition between several sites (or the same site at
several times) - this is a necessary pre-requisite to further
analyses attempting to explain those differences;

c) the construction of univariate indices (eg diversity) and
distributional plots (eg abundance-biomass comparisons) which
indicate levels of disturbance or "stress" at sites;

d) the vrelation of both univariate and multivariate faunal
descriptions to gradients of chemical contamination and background
environmental variables.

The practical sessions allowed the participants to apply the methods
described in the accompanying lectures, on published data sets chosen to
illustrate changes in benthic community composition at macrofaunal and
meiofaunal levels, resulting from contaminant impact by sewage sludge dumping,
pulp mill effluent, oil spills etc.

In the event, the timing of breaks etc in the programme outlined in
Annex II was not adhered to exactly, mainly due to the keenness of the
participants to work for longer periods both in the middle and at the end of
each day. However, the lecture content was exactly as programmed and the
Tecture notes are given in detail in Annex III. -

3. EVALUATION OF THE WORKSHOP

At the end of the workshop, participants were asked to fill in the
following questionnaire. This had exactly the same form as at previous
workshops, in order to allow direct comparison. The questions asked are given
in full below together with a summary of the replies (usually in the form of

the percentage of replies that were a, b or ¢); a total of 18 questionnaires
were returned.



QUESTIONNAIRE

Please respond to the following questions, which will help us run
better courses in the future. Please be honest, the answers are anonymous!

Q 1. Did the course announcement describe the content of the course:
a) well, b) adequately, c) inaccurately (If ¢ state why)
a) 94%, b) 6% c) 0%
Q 2. Were the levels of expertise expected and described in the
course announcement:
a) accurate, b) acceptable, c) inaccurate (If ¢ explain why)
a) 74%, b) 28%, c) 0%
Q3. Was the information sent to you prior to the course:
a) goed, b) average, c) poor {If ¢ explain why)
a) 83%, b) 17%, c) 0%
Q 4. Were the basic institution facilitijes:
a) good, b) average, c) poor (If c explain why)
a) 50%, b) 50%, c) 0%
Q 5. Were the computing facilities:
a) good, b) average, c) poor (If ¢ explain why)
a) 39%, b) 61%, c) 0%
G 6. Was the overall course design:
a) fine, b) too detailed, c) inadequate (If b or ¢ explain why)
a) 94%, b) 6%, c) 0%
Q7. How important were the Introductory Statistics lectures as a
refresher before the multivariate statistics?
a) very important, b) useful, c¢) could be omitted
a) 61%, b) 39%, c) 0%
Q 8. Is STATGRAPHICS an essential part of the course:
a) yes, b) perhaps, ¢) no (If ¢ say why)
a) 89%, b) 11%, c¢) 0%
g 9. Please fill out the spaces below with a score of 2 for good,
1 for average and 0 for poor for the content of:
Lectures Practicals
Introductory

statistics (In.1-In.5)

Multivariate/graphical
statistics (1-14)

General lectures

(no numbers)




Q 10.

Introductory statistics - content
Lectures 2: 100%, 1: 0%, 0: 0%
Practicals 2: 78%, 1: 22%, 0: 0%

Multivariate/graphical statistics - content
Lectures 2: 100%, 1: 0%, 0: 0%
Practicals 2: 67%, 1: 33%, 0: 0%

Genaral lectures - content
Lectures 2: 94%, 1: 6%, 0: 0%

Please fill out the spaces below with a score of 2 for good,
1 for average and O for poor for the gase of understanding of:

Lectures Manuals Examples

Introductory
statistics

Multivariate/
Graphical
statistics

Computer
programs

G 11.

Q 12.

Introductory statistics - ease of understanding
Lectures 2: 83%, 1: 17%, 0: 0%
Manuals 2: 76%, 1: 24%, 0: 0%
Exampies 2: 76%, 1: 24%, 0: 0%

Multivariate/graphical statistics - ease of understanding
Lectures 2: 78%, 1: 22%, 0: 0%
Manuals 2: 61%, 1: 39%, 0: 8%
Examples 2: 72%, 1: 28%, 0: 0%

Programs - ease of understanding
Lectures 2: 56%, l: 44%, 0: 0%
Manuals 2: 61%, 1: 39%, 0: 0%

Do the multivariate programs fulfil the demands that you have
for data analyses:

a) well, b) averagely, c¢) poorly (If c say why)

a) 72%, b) 22%, c) 6%

Were the programs:

a) easy to use, b) acceptable to use, c) difficult to use (If
¢ say why)

a) 33%, b) 67%, c) 0%



Q 13. Was the progress through the course:
a) just right, b) too fast, ¢) too slow (If b or c say why)
a) 39%, b) 61%, c) 0%

G 14. Which parts of the course did you find most useful?

A1l respondents replied to this question, identifying specific
parts of the course. The following were mentioned by the given
% of respondents:

53%: Multivariate/graphical analysis

29%:  All parts

12%: Introductory statistics and STATGRAPHICS
6%:  Practicals

Q 15. How does this course compare with other UN courses:
a) better than average, b) average, c) below average (If ¢ say
why)
a) 60%, b) 40%, c) 0% (there were 10 respondents to this
question).

Q 16. How does this course compare with other courses (state which)
a) 67%, b) 33%, c) 0% (there were 16 respondents to this
question).

Q 17. Any other comments you may wish to add?

The one comment that was common to 40% of the replies was to
the effect that a Jlonger workshop would be necessary to
assimilate fully all the information presented (several verbal
comments sugested a monthi). There were no other critical
comments apart from some congratulatory ones.

As in previous workshops in this series (Piran, Athens, Split) the
overall response to the workshop was positive and enthusiastic. Course
participants were generally very keen, prepared to work long and taxing days,
and able to take on board some very complex concepts. Though the general
level of previous experience of statistics and microcomputing, and the
facility with spoken and written English, were even more variable than in the
previous workshop, nonetheless all participants seemed to feel that they had
acquired relevant knowledge and experience from the two-week period. This is
evidenced by the rating of the overall course design (94% said "fine") and by
the Tlarge number of replies to questions that gave the maximum possible
rating. For all participants and across all questions that had a straight
multiple choice rating for aspects of the course, between:

a or 2) good, fine, essential, easy to understand, easy to use,
Jjust right, better than average eic;

b or 1) adequate, acceptable, average and

¢ or 0) poor, below average, inaccurate, inadequate, difficult to
use,



72% of the replies were a), 28% were b) with only 1 out of 454 replies of ¢).
This is a very high level of satisfaction and indicates that the course was
very worthwhile. Nonetheless, it is instructive to look more closely at the
replies to specific quesiions, particularly where opinion was more evenly
divided between a) and b) replies.

Questions on prior notification of the course content, levels of
expertise expected etc attracted excellent ratings, very much better than in
the previous (national) workshops in this series. The institution facilities
were considered good or acceptable (equally split) by all participanis, a
rating very similar to previous workshops. There was somewhat less enthusiasm
for the computing facilities than in the previous workshop (which in fact had
attracted a rather higher rating than earlier workshops, because of the more
powerful nature of the PCs). There was clearly a slight divergence of opinion
here between the participants and the lecturers. The latter considered the
computing facilities to.be the best encountered in the entire series; all
machines were basically of the same type and set up in the same way, there
were ample machines (at Teast one for every two participants), printers were
all set up with switching devices to allow hard-copy output from all machines,
and the computing support from local AMTA staff, when occasional hardware or
installation problems were encountered, was truly excellent. In comparison
with previous workshops, instailation and operation of the programs was
straightforward and comparatively trouble-free. Being XT-compatibles, the PCs
were rather slow in operation however, and some of the participants clearly
found them slightly slower than the machines available in their home
laboratories - though it should be emphasised that none of them considered the
computing facilities to be "poor".

There is an interesting general point here about rising expectations
in the area of personal computing. The other question to attract a notably
Tower rating than in previous questionnaires concerned the ease of use of the
programs. Whilst all considered them acceptable to use (or better), only a
third thought they were easy to use. This partly results from the fact that
some participants had previously no experience of PCs but also, one suspects,
reflects the fact that those with some previous experience (the majority) were
more used to a Windows-type interface (a GUI - graphical user interface) which
is becoming the "norm" in mass-market PC software. Expectations of hardware
performance and software presentation are continually rising and it may be
that the current "question and answer" user interface, essentially dating from
the first workshop in 1988, is beginning to show its age.

The material covered by the PRIMER programs is continually evolving of
course, and seemed very well received. Nearly three-quarters classed the
multivariate programs as fulfilling their data regquirements "well" {one-
quarter said "averagely"). This is somewhat better than in the previous
workshop, and, along with other answers, reflects the careful selection of
participants for the Alexandria workshop - most had strong interest in
analysing data sets of the type caovered in the course. This is also clear
from the selections given in answer to question 14 and the 100% rating given
to the lecture content in question 9 (the first time that the main
introductory and multivariate lectures have attracted the maximum rating for
content from all participants!).

The Introductory Statistics lectures, covering univariate statistical
techniques such as t-tests, ANOVA, regression etc were regarded as very



jmportant by nearly two-thirds of the respondents, and useful by ail. The
STATGRAPHICS package, used to perform these analyses, was also considered an
essential part of the course by nearly all people, a marked increase on the
response in the previous workshop. This must reflect the additional emphasis
placed on univariate analyses following the experience of the Split workshop.
There, the lectures and practicals on this aspect were condensed into
(probably) too short a period, especially given the range of data sets brought
to the workshop on that occasion, several of which were exclusively
univariate. On this occasion, the univariate side was suitably expanded and
this clearly met with the approval of participants (though the subsequent
reduction of time available for multivariate methods may have contributed to
the comments about lack of time to grasp fully all aspects of the material
covered). In the discussions of "own data", several univariate analyses were
important, particularly higher-way analysis of variance and regression/
correlation analyses.

Perhaps the only other point of significance to note is the slightly
Jower rating for ease of understanding (of lectures and manuals) than recorded
for the Split workshop - the current levels were closer to those attracted at
earlier workshops. Nonetheless, between two-thirds and three-quarters of
respondents gave maximum rating for this attribute, with no-one classing "ease
of understanding" as poor. Great efforts were made by the lecturers to
simplify their presentations, in particular to lecture at a very slow speed,
commensurate with the difficulties in understanding English that were expected
with some participants. In general, this seems to have worked well, with many
of the participants expressing gratitude {verbally) for the efforts made to
maximise the effectiveness of communication. However, this again had a
tendency to reduce the length of time actually spent in performing the
practical examples or analysing "own data", adding to the feeling that
progress through the course was too fast and that a much Tonger course was
needed to do it justice (answers to guestions 13 and 17). The latter was
impossible of course, logistically, financially and from the viewpoint of
availability of lecturers and demonstrators. Nonetheless, 40% of respondents
felt that speed through the course was "just right", and there is always going
to be difficulty in resolving the disparate needs of trainees with very
vgriab]e competence in the workshop language, and in background experience (eg
of PC use).

Fewer people answered question 15, though most answered 16. In
general, comparisons with other courses were favourable. In summary, there
can be no doubt that the workshop was very successful and it showed again the
relevance of new methods of multivariate analysis, combined with basic
univariate statistics, to the type of field and Tlaboratory data being
collected in the region.

4. CONCLUSION

The Tecturers and demonstrators were most impressed with the
enthusiasm and dedication of the trainees, the helpfulness of staff and the
facilities provided at the Arab Maritime Transport Academy, and the smooth
organization of the whole event; several interesting discussions of
participants’ own research data were initiated and it is anticipated that, as
in previous workshops, this should result in an improved quality of reporting
and publication of their work.
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ANNEX 11

PROGRAMME OF WORKSHOP

Monday 9 December

08:30-09:00 Registration of participants

09:00-09:30 Opening of the Workshop

09:30-10:30 1I.1 The precision of the mean and confidence limits by J.S.
Gray

10:30-11:00 Coffee break

11:00-12:30 Introduction to PC-DOS and STATGRAPHICS by M.R. Carr

12:30-14:00 Lunch break

14:00-16:00 Practical session on PC-DOS and introduction to
STATGRAPHICS

Tuesday 10 December

08:30-09:30 1I.2 Spatial dispersion of populations and transformations
of data by J.5. Gray

09:30-10:30 Practical session on I.1 and I.2

10:30-11:00 Coffee break

11:00-12:00 Practical session on 1.2

12:00-12:30 1.4 Comparing samples: t-test and paired t-test by J.S. Gray

12:30-14:00 Lunch break
14:00-15:30 Practical session on 1.4
15:30-16:00 Discussion of arrangements for analysing participants’

own data sets

Wednesday 11 December

08:30-09:30 1.4 Analysis of variance by J.S5. Gray
09:30-10:30 Practical session on I.4
10:30-11:00 Coffee break



11:00-11:

11:30-12

12:30-14:
14:00-15:
15:00-15:

15:30-16

Thursday

30

:30

00
00
30

:30

12

I.5

December

08:30-09:
09:30-10:

10:30-11
11:00-12

12:30-14:

14:00-15

15:30-16:

Saturday

30
30

:00
130

00

:30

30

14

[.6

December

08:30-09:

09:30-10

10:30-11:

11:00-11
11:30-12

12:30-14:

14:00-14

30

:30

00

130
:30

00

:30

&

I1.2

I1.3

Practical session on [.4

Regression and correlation by J.S. Gray
Lunch break

Practical session on I.5

Introduction to entering or reformatting own data sets
by E. Papathanassiou

Practical session on entering or reformatting own data

Non-parametric methods by J.S. Gray
Practical session on 1.6
Coffee break

General lecture on biological effects and monitoring of
pollutants by J.S. Gray

Lunch break

Practical session on own data sets (univariate analysis
only)

Question and answer session on basic (univariate)
statistics

A framework for studying changes in community structure
by R.M. Warwick

Multivariate methods: measures of similarity of species
abundance/biomass between sampies by K.R. Clarke

Coffee break
Practical session on lecture [I.2 (by hand)

Multivariate methods: hierarchical clustering by K.R.
Clarke

Lunch break

Practical session on lecture II.3 (by hand)



14:30-15:00
15:00-16:00

Sunday 15 December

08:30-09:45

09:45-10:30
10:30-11:00
11:00-12:30

12:30-14:00
14:00-16:00

I1.4

Monday 16 December

08:30-09:45

09:45-10:30
10:30-11:00
11:00-12:00
12:00-12:30
12:30-14:00
14:00-16:00

Tuesday 17 December

I1.8

IT.10

08:30-10:30

10:30-11:00
11:00-12:30
12:30-14:00

11.6/7

Introduction to multivariate software by M.R. Carr

Practical session on lectures II.2 and II.3 (on
computer)
Multivariate methods: ordination of samples by

Principal Components Analysis by K.R. Clarke
Continued practical session on lectures II.2 and 11.3
Coffee break

Multivariate methods: ordination of samples by Multi-
Dimensional Scaling (MDS) by K.R. Clarke

Lunch break

Practical session on lectures II.4 and II.5

Univariate and distributional methods: diversity
measures, dominance curves and other graphical analyses
by R.M. Warwick

Practical session on lecture 1I.8

Coffee break

Continued practical session on lecture II.8

Species aggregation by R.M. Warwick

Lunch break

Practical session on own data sets

Testing for differences between groups of samples, and
species contributions by K.R. Clarke

Coffee break
Practical session on lecture IL.&/7

Lunch break



14:00-15:00 1II.9 Transformations by K.R. Clarke

15:00-16:30 Practical session on own data sets

Wednesday 18 December

08:30-09:30 I[I.11 Linking community analyses to environmental variables
by K.R. Clarke

09:30-10:30 Practical session on lecture II.1l1
10:30-11:00 Coffee break

11:00-11:45 1I.12 Causality: community experiments in the field and
laboratory by R.M. Warwick

11:45-12:30 1I.13 Data requirements for biological effects studies: which
components and attributes of the biota to examine?

12:30-14:00 "" Lunch break

14:00-16:00 Practical session on own data sets

Thursday 19 December

08:30-09:15 II.14 Relative sensitivities and merits of univariate,
graphical/distributional and multivariate techniques by

R.M. Warwick

09:15-10:30 Practical session on own data sets

10:30-11:00 Coffee break

11:00-12:00 Practical session on own data sets

12:00-12:30 Arrangements for obtaining and mounting multivariate
software by M.R. Carr

12:30-14:00 Lunch break

14:00-15:30 Discussion of participants’ own data results

15:30-16:30 Question and answer session on multivariate/graphical

methods



Note:

The numbering of lectures corresponds to the order of material
presented in the Workshop notes: the Part I lecture notes (I.1 to
1.6) by Prof. Gray deal with basic (univariate) statistics and the
Part II notes (II.1 to II.14) by Drs Clarke and Warwick deal with
multivariate community analyses. The other (unnumbered) lectures
detailed above are not covered in the formal Tecture notes but
hand-outs will be available with the lecture, in some instances.
A separate set of notes by Mr Carr covers the practical details of
using the computer programs for multivariate analysis, developed at
the Plymouth Marine Laboratory.






ANNEX T1F

LECTURE NOTES







INTRODUCTION

This document is divided into two parts. Part I contains the material
drawn upon by Professor J.S. Gray and Mr. M.R. Carr for the six introductory
lectures and Part II consists of the lectures given by Drs K.R. Clarke and
R.M. Warwick. No lecture notes are available for the informal lectures which
do not constitute the core of the workshop but hand-outs will be available
with the Tecture, in some instances. A separate set of notes by Mr Carr
covers the practical details of using the computer programs for multivariate
analysis, developed at the Plymouth Marine Laboratory.

The following lectures which deal with some basic and important
statistical concepts and their practical application are contained in Part I.

Lecture 1: The precision of the mean and confidence limits

Lecture 2: Spatial dispersion of populations and transformations
of data

Lecture 3: Sampling and sub-sampling

Lecture 4: Comparing samples: ‘t’ test, paired ‘t’ test and
analysis of variance

Lecture 5: Regression and correlation analyses

Lecture 6: Non-parametric methods

The following lectures which are principally concerned with graphical

and multivariate statistical analysis of community data are contained in Part
IT.

Lecture 1: A framework for studying changes in community structure

Lecture 2: Multivariate methods: measures of similarity of species
abundance/biomass between samples

Lecture 3: Multivariate methods: hierarchical clustering

Lecture 4. Multivariate methods: ordination of samples by
Principal Component Analysis (PCA)

Lecture 5: Multivariate methods: ordination of samples by Multi-
Dimensional Scaling (MDS).

Lecture 6: Multivariate methods: testing for differences between
groups of sampies

Lecture 7: Multivariate methods: species analyses

Lecture 8: Univariate and distributional methods: diversity

measures, dominance curves and other graphical analyses

Lecture 9: Transformations



Lecture

Lecture

Lecture

Lecture

Lecture

10:
11:

12:

13:

14:

Species removal and aggregation

Linking multivariate and univariate community analyses
to environmental variables

Causality: community experiments in the field and
Taboratory

Data requirements for biclogical effects studies: which
components and attributes of the biota to examine?

Relative sensitivities and merits of univariate,
graphical/distributional and multivariate techniques.



PART I






Lecture 1: THE PRECISION OF THE MEAN AND CONFIDENCE LIMITS

There are a few terms that must be undersitgod from the beginning.

*i

- the sample mean
g - the true population mean

The sample mean is simply the average of a series of samples. For example let
us take 5 x 0.1 m2 samples of a population of bivalves on a beach. We obtain
the following data:

25,20,15,35,60 X = 31 and the sample size (n)= 5

We first calculate the variance (s2)

This is s2 = (ZX2 - (2X)2/n) / (n - 1)
= (6075 - (1552/5) / (4)
s2 = 317.17

This gives another term the STANDARD DEVIATION (s)

{s2

1]

where s

1]

s = 17.82

Often we wish to estimate the total population in a given area and the
precision with which we estimate that population.

e.g. X = 10.125 taken from a sample area of 100 cm?2. The total area is
300,000 cm2.

Therefore, the population estimate is
300,000 * 10.125/100 = 30,375

The true population mean (p) has only one vaiue but the sample mean (X) has
many values

e.g. 9.51, 10.74, 9.82, 10.20, 10.125

and these could all be used to estimate the total population size. If we took
enough samples all these estimates could be arranged in a frequency
distribution and would give us a normal distribution centered around {z) the
true population mean.

This gives us one of the major rules in statistics; the so-called
Central Limit Theorem which states that:

"The means of Targe random samples from the same population are approximately
normally distributed with mean equal to the popuiation mean (g) and variance
near the population variance (o¢2)."
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In the above definition the term large is used. In statistical terms large
means a sample size of over 30 samples, so-called large sampie statistics.
Often in marine biology it is impossible to take such large samples and we
must be aware that in most cases we operate on SMALL SAMPLE STATISTICS which
are NOT necessarily those that are in your P.C. or mainframe computer!

Above, we have used another term, variance. We have the sample variance (s2)
and the population variance (g¢2). Often in statistics one uses the standard
deviation called {s) for a sample and g for a population.

But in studies of populations (and samples of populations) there is another
term that is often confused with the standard deviation, namely, standard
error. This term in relation to populations (and samples) refers strictly to
the standard error of the mean.

In the above example we had a series of estimates of the true population mean
{z) which gives :

Standard deviation of sample means called standard error (s.e.)

S.8.348| — or

hu
o



This Tlatter term estimates the error in X as an estimator of ux. This is
usually written as : X £ s.e.

For exampie if n= 80, X = 10.125, s? = 8.5918
Y (8.5918/80)

[}

5.€.

0.3277
For the first 8 counts only X = 10.5, s2 = 12.857
s.e, = 1.268 i.e. 4 x the s.e. of 80 counts.

The standard error thus estimates the precision which the sample mean (X) is
an estimate of the true population mean (). Only when interested in this
estimate should one use standard error. More often, one is interested in an
estimate of the variability in the sample mean and here one should use
confidence limits. These are usually written as 95 or 99% confidence limits.
The 1imits show the range within which one can be 95 or 99% certain that the
true population mean lies.

We will deal with both Large Sample and Small Sample statistics.
CONFIDENCE LIMITS FOR LARGE SAMPLES (n = > 30).

In a normal distribution 95% of the values 1ie within 1.96 s.d’s of the true
population mean. Therefore, 95% of the sample means 1ie within 1.96 s.e’s of
the population mean.

i.e. X -1.96 s.e. to X + 1.96 s.e.
or X -tfs2/n to X + tVs2/n
Here we use the statistical table ‘t’ when the population variance {o¢2) is

unknown and is estimated by the sample variance (s2). For ‘i’, degrees of
freedom (d.f. = n-1) where n = infinite ‘t’= 1.96. For d.f. = 30 't'= 2.04.

X = 10,125, s2 = 8,5918, n = 80, 't’ for d.f. 79 = 1.99
s.e, = 0.3277
X =10.125 £ 0.3277

95% c.1. = X - 1.99(0.3277) to X + 1.99(0.3277)
- 10.125 - 0.6251 to 10.125 + 0.6251

9.4730 to 10.7770
For total population estimate:

300,000(9.4730)/100 = 28,419

[t}

to 300,000(10.7770)/100 = 32,331



We can be 95% certain that the true population mean lies between 28,419 and
32,331.

SMALL SAMPLES (n < 30).

Here we cannot assume that a normal distribution holds. Instead we use an
estimate based on the Poisson fraction:

e.g. X = 11.273, s2 = 7.415, (s = 2.723), n = 10,
t s (9) = 2.262

b
]
I+

2.262 (2.723) / 7(9)
% =t 2.0531

=+

= 9,220 to 13.325



Lecture 2:  SPATIAL DISPERSION OF POPULATIONS AND TRANSFORMATIONS OF
DATA

There are three basic types of dispersal:

1. random

2. regular

3. contagious {or aggregated)
These groupings can overiap, for example a contagious distribution can result
from randomly distributed individuals with regularly distributed individuals
in each group. The investigation of patch structure and patch size becomes

important.

The 3 types of dispersal can be characterized statistically and simply since
in:

random distributions: variance (s%) = X - Poisson
regular distribution: s° < X - Positive binomial
contagious distribution: s2 > % - Negative binomial

The mathematical distributions on the r.h.side are those which can be applied
to the respective distributions. In fact the positive and negative binomial
models are just one of many types that could be fitted.

1. Random distribution.

Statistically it 1is not 1in fact possible to test for this
distribution! Yet one of the requirements before being able to do statistical
tests is that one has a normal (i.e. random) distribution. One simply has to
use a test and say that the hypothesis of randomness is not disproved.

A random distribution results from a) chance effects or b) the
influence of a single environmental factor. Usually in nature environmental
factors do not affect populations randomly and there are a multiplicity of
factors which act in concert. So in nature random distributions are in fact
rare.

Randomness is often produced by inefficient sampling (e.g. wrong
sample size where quadrat is much larger or smaller than the average size of
a patch and the patches are randomly distributed then the population will
appear randomly distributed). Similarly, if the population density is Tow it
is extremely hard to detect patches. As populations get older they tend to
become more random as patches are split up. Here randomness may apply.



Tests for randomness.

The Index of Dispersion I = st (n-1) / %

This is tested for significance by reference to the Chi square tabie.

Example 1: Counts 14, 15, 12, 7, 8, 14, 11, 14, 10, 9, 10

% =11.273 s?=7.415n = 11
s (n-1) /%

7.415 (10) / 11.273
= 65.578
From chi square table pg.os (10) = 18.387

Conclusion: we cannot reject the hypothesis that the counts have a random
distribution.

Example 2: Counts 98, 22, 72, 214, &7
% = 94.6 s2=5202.8n=75

u

I

5202.8 (4) / 94.6

219.99

Chi square pg.os (4) = 9.488

Conclusion: we reject the hypothesis that the counts come from a random
distribution. As the variance / mean ratio is much greater than one a
contagious distribution occurs.

Often one wishes to know the size of the patches. One practical way to do this
is to use quadrats of increasing sample size. The maximum variance will be
found when patch size and quadrat size are equal.

Morisita’s index (M).

Here one must keep doubling quadrat size and then compare the ratio of the
index (M) of the smaller to the Targer quadrat.

M=n (Z(x2) - Ix) / (Ix)?% - Ix

Ratio = M for quadrat size q / M for quadrat size 2q



~ £r
_—L ./ .“N.\. .

l 1 1 1 3 L ] e
0 R2¢ 42 Vs /fbpg g 64g 2v: 258 o

In the above example patches are at 8q cm® with larger patches at 256q cm.

Many other indices of aggregation have heen produced and Elliott (1971) has
a good coverage of this topic.

Random distributions are rather rare in nature. Patchiness seems to be the
rule. This has consequences for quantitative statistical analyses of most
field data as there are a series of rules that data sets must conform to
before one can apply statistical techniques. These are that:

1. The data follow a normal distribution
2. The variance of the sample is independent of the mean
3. Components of the variance should be additive.

For most biological data patchiness is the general pattern so that rule 1 does

not apply and usually the variance increases with the mean. Rule 3 is

particularly important when applying the analysis of variance, which we will
treat later.

One way of overcoming the problems above that the rules are broken is to
"TRANSFORM the raw data. There are a number of different transformations that
are commonly applied such as the square root transformation or TJog
transformation. These will be dealt with more fully under the multivariate
analysis section. Probably the most widely used is the log transformation.
Often in biological sampling there are frequently zeros in the data set. One

cannot take the Tog of 0 so in such cases a transformation is used called
log,, (n + 1), where 1 is added to every number in the set so that when
transformed the log of 1 is 0.

The Tog transformation usually achieves two things a) it normalizes the data
and b) it renders the variance independant of the mean. That this is achieved
should be tested, but is rarely done and is simply assumed. Let us examine
an example.



Samples A B c D E F
0 3 1 6 7 12
2 1 5 1 2 7
1 1 2 5 6 10
0 1 0 7 9 15
0 4 2 4 5 9
b 0 5 1 2 6
1 1 2 6 7 13
0 4 1 5 6 11
1 3 3 3 4 8
1 3 4 3 3 7
0 5 1 5 5 10
2 3 3 3 3 8
1 2 2 4 6 11
0 2 4 3 4 8
0 1 0 8 8 14
2 1 3 4 5 9
3 2 4 2 2 6
0 2 4 2 3 7
1 2 3 4 4 9
1 0 6 2 1 5
} 0.85 2.05 2.75 3.90 4.860 9.25
S 0.77 1.84 2.83 3.67 4.78 7.57
’Q
63 ) ..0
/ .
O/ /-O__' re-
P4

Here mean and variance are equal but variance increases with mean (rule 2
broken) so we must transform

A B ¢ D E F
Logo (n +1) y 0.22 0.43 0.53 0.65 0.71 0.99
%, 0.04 0.05 0.06 0.03 0.03 0.02

oesf -

L




Se variance and mean are no longer proportional.

Confidence 1imits where log transformation is used.

The mean of a transformed count (1¥) = Zlogx / n and the variance szyis
calculated in the usual way but on the log-transformed data

95% confidence limits are § + t s% / n
But when one back transforms the confidence limits become *and / not + and -.

This gives a GEOMETRIC (or derived) MEAN which is always smaller than the
arithmetic mean.

e.g. Counts 98, 22, 72, 214, 67
X =94.60 s2 = 5202.80
Log transformed ¥ = 1.8695 s, = 0.1268
From the "t’ table tg.o5(4) = 2.776
t (Vs%,/ n)
= 1.8695 + 2.776 4 (0.1268/5)

I+

Confidence 1imits are y =

-

= 1.8695 + 0.4419

+

= 1.4276 to 2.3114
Antilogs give y=74.05 with 95% c.1. 26.77 to 204.83
Alternatively 74.05 */ 2.77 = 27 to 205

e.g. Logq (X + 1) Counts 0, 3, 9, 10 X = 5.5
¥ = 0.6609 s%=0.2333 tpos(3) = 3.182
=ttt (s%/n)
= 0.6609 + 3.182 (0.2333 / 4)

+

= 0.6609 t 0.7685

4

= -0.1076 to 1.4295

Geometric mean 4.58 - 1= 3.58

antilog ¥y -1

95% c.1. (antilog -0.1076) -1 =< 0

26.88 - 1 = 25.88

1]

(antilog 1.4295) -1

Geometric mean = 3.58 with c.1. from 0 to 25.88!



One should note that percentages are not normally distributed and where one
has percentages between 0 and 30 or/and 70 and 100 a transformation is
necessary. Physiological data often contains percentage data and only rarely
have I seen transformations properly employed.

The transformation to be used here is the ANGULAR (OR ARCSINE} TRANSFORMATION.

The transformation invalves replacing the percentage (p) by the angle whose
sine is p. Tables are to found in most statistical books e.g. Snedecor and
Cochran (1967), Rohlf and Sokal (1981).

For example 10% is transformed to 18.44, 15% to 22.79, 30% to 33.21 etc.



Lecture 3:  SAMPLING AND SUB-SAMPLING

Most sampling methods used in marine habitats are aimed to give an estimate
of the size of a given population or populations, (e.g. the plankton or
benthos where it is not possible to count all individuais). But how does one
take the sample? The simplest method is to take a RANDOM sample but is this
the most efficient method? The answer is "it is not" but let me try and
demonstrate why.

Let us imagine we cover a whole area with 6 samples and find the following
counts

Sample A B C€C D E F
Nos. 1 2 4 6 7 16 Total = 36

If we draw only 3 samples from this what are our population estimates?

Samples Sample Estimate Estimate

Totali(T) of popn.(x) of error

(T * 2) {36 - x)
ABC ‘ 7 14 -22
ABD g 18 -18
ABE 10 20 -16
ABF 19 38 2
ACD 11 22 -14
ACE 12 24 -12
ACF 21 42 6
ADE 14 28 -8
ADF 23 45 10
AEF 24 48 12
BCD 12 24 -12
BCE 13 26 -10
BCF 22 44 8
BDE 15 30 -6
BDF 24 48 12
BEF 25 50 14
CBE 17 34 -2
CDF 26 52 16
CEF 27 54 18
DEF 29 58 22
Mean 18 36 0

?; g ge?sure of the accuracy of sampling we can use the MEAN SQUARE ERROR



This is M.S.E.

i

I(error estimate) 2/ sample size (n)

(22% + 182 + 16%..... 222y / 20

3504 / 20 = 175.2

This gives a standard error of V175.2 = 13.2

i.e 36 £ 13.2 (or 37%)

The sampling plan adopted (3 random samples) is not therefore very efficient.

If we know something about the populations we can improve accuracy. Say we
knew that F would give higher values than the other samples. Wherever F occurs
in a sample we get much higher values. So the strategy is to divide the area
into two STRATA, stratum 1 (S1) with F and stratum 2 (S2) without F. The
tactic now is them to always include F but take the other two samples at
random.

Sample Sample total Estimate Error of
in Stratum 2(T2) (16 + 2.5 T2) Estimate

S2 51
AB F 3 23.5 -12.5
AC F 5 28.5 - 7.5
AD F 7 38 b - 2.5
AE F 8 36.0 0
BC F 6 31.0 - 5.0
BD F 8 36.0 0
BE F 9 38.5 2.5
CD F 10 41.0 5.0
CE F 11 43.5 7.5
DE F 13 48.5 12.5

Mean 36.0 0

The estimate for S1 total is always correct: 16. The estimate for S2: there
are 2 out of 5 samples therefore we multiply T2 by 2.5.

M.S.E. is now 487.5 / 10 = 48.75
standard error = 7.0 {or 19% of total)

So the s.e. is much improved from 37% to 19%. In general STRATIFIED RANDOM
sampling is much the preferred strategy. It does require however that one know
something about the area or populations being sampled. This implies that one
should first do preliminary surveys before setting out on detailed
quantitative sampling programmes.



An example showing how one plans a stratified random sampling programme for
a benthic survey follows. We plan to sample an area of 200 m" with a grab
taking an area of 0.05 m*. Potentially therefore, there are 200/0.05 = 4,000
sampling units within the area. We do a preliminary survey and find that the
bottom is very heterogeneous. Since we know nothing about the benthic fauna
we suspect that grain size variations could be important so we map the
sediment. Then we want to sample with equal intensity on each type of bottom.
This is called PROPORTIONAL ALLOCATION of samples. Let us plan to give an even
coverage of 10% to each area i.e. 40 samples total, a not unreasonable number.

We find gravel (nl) covers 1000 sampling units, coarse sand (n2) 500, sand
{n3) 1500, fine sand (n4) 800 and mud (n5) 200, totalling 4000 sampiing units.

We then allocate our 40 samples in proportion

nl = 1000 * 40 / 4000 = 10 samples
n2 = 500 * 40 / 4000 = 5 samples
n3 = 1500 * 40 / 4000 = 15 samples
nd = 800 * 40 / 4000 = 8 samples
n5 = 200 * 40 / 4000 = 2 samples

As to the placement of samples within the area ideally we divide up the whole
area give each potential sampling unit a number and pick the numbers from
random number tables from a book of statistical tables.

Another method of allocating samples within a stratified random approach is
called OPTIMAL ALLOCATION where one takes more samples where there is high
variability. As a simple method one can allocate sampies according to the
variability of the standard error. Let us take an example: '

In this example the area was divided up first according to sediment types
using methods similar to those shown above and a preliminary sampling done.
The total number of animals found in this preliminary survey taking 7
replicates per station were:

Replicates

Stratum Station A B C D E F @G
1 1 1020 1180 1300 2100 980 900 1050

2 390 490 210 360 220 310 150

3 140 440 360 150 490 1070 920

2 4 140 150 190 160 150 180 140

5 420 950 350 150 180 330 150

3 6 370 420 700 100 200 190 220
7 620 ‘1390 380 450 480 2600 870



Stratum Station A B C D E F G
4 8 390 43¢ 110 449 110 180 160

9 40 20 350 60 80 20 50

10 150 140 660 320 240 880 1660

11 730 670 470 340 930 370 410

5 12 1380 1410 1190 2710 1600 1290 530
13 1620 320 1550 760 1250 1890 270
14 1850 2060 1090 2410 1520 220 1620

Using Statgraphics calculate the means, standard deviation and standard errors
for this data. This gives:

Stratum Samples size (n) Mean s.d s.e
1 21 677.62 504.62 110.12
2 14 260.00 218.32 58.35
3 14 642.14 654.90 175.03
4 21 309.05 381.59 83.27
5 28 1162.86 686.68 129.77

Total 556.54

Calculate each s.e. as a proportion of the Total s.e. and use this proportion
to calculate sampling allocation per stratum. Here it is assumed that a total
of 65 samples can be taken in the next survey.

Stratum Proportion of Total s.e. No. of samples/siratum
1 0.198 13
2 0.104 7
3 0.315 20
4 0.149 10
5 0.232 15

We can then calculate how effective this sampling system has been, compared
with random sampling. First run an analysis of variance (using Statg) on the
data testing within strata variance compared with bewteen strata variance.
This gives:

Source of variation  Sum of Squares d.f. Mean Square F ratio
Between strata 11902293 4 2975573.3 10.27
Within strata 26931369 93 289584.6

Total 38833662 97 400347.0

The pooled standard deviation within strata s, is:

/289584.6
538.13

Su
Sy



Estimated s.e. of Ygr = s{Yst)

s{Yse) =s,/fn n=298
= 538.13//98
= 54.36

With purely random sampling S, = s/fn
S, = 1400347 7 V98
63.91

Therefore the stratified sampling reduces the s.e. by
((63.91 - 54.36) * 100) / 63.91 %

i . a

This is a big change and again illustrates the advantages of stratified
sampling.

Size of sample.

In general, small sample sizes are better than Targe ones because:

i) more small units can be taken with the same counting
effort.
ii) more samples gives a greater number of degrees of freedom

for statistical tests and therefore, a reduction in error.
iii}  many small samples in a given area will cover more ground
and be more representative than few large samples.

But size reduction must not go too far otherwise edge effects will occur where
the population is underestimated due to the disturbance of the edge of the
sampler. So a compromise is necessary. Do NOT assume however, that a given
grab or plankton net is the appropriate size for a given population simply
because it is available. Most grabs were developed as fractions of 1 m* and
this may be a quite inappropriate size for a given population.

Number of samples.

As we have established most species are not randomly or regularly distributed
but aggregated. If only a small number of samples is taken from an aggregated
population then the population estimate will be highly inaccurate.

One of the simplest methods to determine the number of samples that should be
taken is to take 5 samples and calculate the mean and variance, fake 5 more
and calculate the mean and variance for all ten samples and repeat until the
mean and variance are stable. The minimum number if samples where this is
achieved is the correct number.

An alternative is to decide on an acceptable error of one’s estimate of the
population mean and use this in the following equation:

Let us assume that 10% error is acceptable and call this proportion (0.1) D.
The number of samples that should be taken {n) is:

n=s%/(0.1) %

It

100 s? / %2 for a 10% accepted error.



Example: counts: 14,15,12,7,8,14,11,14,10,9,10
s2 =7.42 X =11.273
100 * 7.42 / (11.273)%

n

5.82 i.e. 6 samples

For an aggregated distribution:
Counts: 98,22,72,214,67
s? = 5202.8 X = 94.60
100 * 5202.8 / (94.6)°

[}

n

58

This is an enormous number of samples and is clearly impractical. So accept
a lower error estimate e.g. 20%

n =25 * 5202.8 / (94.6)°

14.53

Sub-sampling.

Frequently with plankton samples one must sub-sample to reduce the amount of
material obtained to reasonable numbers. There are a number of commercial
plankton spiitters on the market (and indeed there are some for splitting

meiobenthos samples). One must test that these samplers are in fact making
random splits of the sample.

Say that one has 4 1 of concentrated piankton and that he takes 5 X 50m1
subsamples and obtains the following data. Is it a random split?

20,25,25,30,40 s?=57.5 Zx=140n =5
In a random distribution s/ % = 1
We use the Index of Dispersion test I = 52 (n-1} / X

57.5 * 4 / 28

"

8.2

Chi square for py o, 4 d.f. = 9.49

As the value is less than the tabulated one we cannot reject the hypothesis
that the sample comes from a random distribution.

We have sampled 5 * 50 ml = 250 from 4Q00 mi i.e 1/16th



The estimated numbers of animals in the 4000ml is:
16 * 140 = 2240

To obtain 95% confidence 1imits we look up in a table of confidence Timits for
a Poisson variable (Biometrika 1959 46, 441-453 copy appended)

For 140 we find t 23
So the population estimates are 23 * 16 = 368
Giving 2240 t 368.

If the sub-samples do NOT fit a random distribution then one cannot estimate
the numbers in the original sample. In my experience many plankton splitters
do not in fact give reliable splits. SO BE WARNED!.

Comparing efficiency of a sampler.

Often one wants to know whether the observed catches of a sampler are equally
efficient within acceptable Tlimits.
The H, is that the samplers are equally efficient.

Example: Samplers 1 2 3 4 5
Counts 6, 8, 16, 5, 18 ¥ =053; n=>5

Expected count = 53 / 5 = 10.6

Chi = (Observed - Expected)? / Expected
= (6-10.6)2 /10.6 +..... (18-10.6)% / 10.6
= 13.51

d.f. = n-1 =4, py g (4)= 9.49

Conclusion: As the calculated value is greater than the Table value we reject
H, that the samplers are equally efficient. This type of fest has many
variants and is widely used.



Lecture 4:  COMPARING SAMPLES: ‘t’ TEST, PAIRED ’t’ TEST AND ANALYSIS
OF VARIANCE

Often one wants to compare the variability between two samples. A simple and
i1lustrative test is the Coefficient of Variation (C).

Where € = s (100) / X%

The coefficient of variation is scaled for differences in mean and is a widely
used descriptive parameter.

Another commonly used test is that of comparing two means. The null hypothesis
(Ho) is that the two means come from the same population and that the means
are within the error for that population. It is usual to assume a 5% error due
to chance.

In all statistical methods there are two types of error that one can make Type
I and Type II errors.

TYPE I ERROR - where one rejects H, when it is true
TYPE II ERROR - where one accepts H, when it was false
A1l statistical tests are prone to both types of error and there is a greater
chance of making one type of error than another in each test. The ideal test
is one where the probability of rejecting H, when true is small and the
Tikelihood of rejecting H, when false is large. Both errors are reduced by
increasing the number of degrees of freedom in a test.
Before doing any quantitative statistical test we must make sure that our
three primary rules hold. When comparing two means with the ‘t’ test there
should be similar variances. If the variances are significantly different then
we cannot validly test if the means are significantly different or not.
Here we use the variance ratio test 'F’
where F = 512/ sazwhere s is always the largest of the two.
Let us test s;%= 8.865 nq = 60, s;° = 7.465 np = 80

F =8.855 / 7.465 = 1.11862
Look up the F ratio table for n-1 = 59 and 79 d.f.
p0_9560,120 = 1.48
Conclusion: Since our value is < the table value we cannot reject the

hypothesis that the variances come from the same population and so we can test
for differences between means using the 't’test.



Student’s ‘t’test.

a) For large samples from normal distributions.

Here 't = X, - X, /\/(512 /n' + 522 / ny)

|
u

e.g. %, = 10.125 s,> = 7.465 n, = 80

%, = 12.245 s,° = 8.855 n, = 60
’t’ = 12.245 - 10.125 /{(7.465/80 + 8.855/60)
= 4.3194
d.f=n +n, -2=280+60-2-=138
't' Po.os (138) = 1.96

Conclusion: Since our calculated value is greater than the table value we
reject the hypothesis that the two means come from the same populations.

Small samples from contagious distributions.

Example:
X, = 4, 5, 8, 14, 14, 15, 15, 19, 28, 36
X, =2, 4, 5, 7, 12

10

>
-
I

= 15.80 s,° = 99.07 n,
5

U}

%, = 6.00 s,° = 14.50 n,

Clearly the variance increases with the mean so that we must transform the
data. Let us assume that a log, transformation is adequate. Now we obtain:

j, = 0.602, 0.699, 0.903, 1.146, 1.146, 1.176, 1.176, 1.279,
1.447, 1.556
¥, = 0.301, 0.602, 0.699, 0.845, 1.079.
y, = 1.0638 s,%(y) = 0.2747
¥, = 0.7052 s,%(y) = 0.2887

Firstly test the variances:
F=0.2887 / 0.2747 = 1.050
Pogs 9.4 = 8.90



Conclusion: Since the calculated value is less than the table value we
conclude that the variances are similar and we can procead with a “t’ test.

t =1.113 - 0.705 / ¥(0.0914/10) + (0.0833/5)
= 2.497
d.f =ny+nz -2 =13

Po.os (13) = 2,16

Conclusion: Since the calculated value is greater than the table value at po.os
we conclude that we reject H, that the means come from the same population and
the means are therefore, significantly different.

Making paired comparisons.

Often two sets of data vary over seasons and one is interested not in
comparing the overall means but in seeing if there is a significant overall
difference, where the null hypothesis is that there is no significant
difference between pairs.

The figure illustrates a typical data set.
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The data are shown below in tabular form for calculating the Paired 't’ test.

Month No. of individuals Difference
(O = ~pF
Spp A Spp B
Jan 12 11 1 1
Mar 56 63 -7 49
Jun 125 107 18 324
Sept 87 78 9 8l
Dec 34 36 -2 4
Total 19 459



(((20° - (2 D)% n) / (n -1))
({459 - 19 / 5) / 4)
9.83

)

S =S /in
= 9.83 /5
= 4.39
t =D/ %
= 3.8/ 4.396
= 0.8644

Po.os (4) = 2.776

Conclusion: Since the calculated value is greater than the tabular value we
reject H, that the means come from the same population.

Analysis of variance.

More often than not one is interested in comparing more than two means and
here one should use the analysis of variance rather than test two and two
means by themselves. The analysis of variance {anova) is one of the most used
and robust statistical tests devised. But it requires that the data sets
comply to the three rules a) samples normally distributed b) variance
independent of the mean and c) components of the variance additive. This
latter criterion has probably been a bit of a mystery but now all will be
revealed in that the ANOVA test breaks down the sources of variance into their
components on the assumption that the components are additive.

Example
Sample A B C D
98 12 86 2
22 13 12 5
72 46 49 12
214 38 33 3
67 49 72 19
X 94.60 31.60 50.40 8.20

5° 5202.80 320.30 878.30 51.70

Clearly the variance increases with the mean so that we must transform. Use
the logyg transformation.



Sample A B C D
1.991 1.079 1.935 0.301
1.342 1.114 1.079 0.699
1.857 1.663 1.690 1.079
2.330 1.580 1.519 0.477
1.826 1.690 1.857 1.277
Total 9.346 7.126 8.080 3.835
22 1.8692 1.4252 1.6160 0.7670
S 0.1268 0.0918 0.1158 0.1163

Now the variance is independent of the mean.

table value for py,, we conclude that H, must be rejected and there are

Calcuiate:
1. The Grand Total Y = 9.346 + 7.126....3.835 = 28.387
2. Sum of squared obs. = 1.991% + 1.342%...1.279% = 45.625
3. Sum of squared group totals / n )
= (9.346° + 7.126°...3.835%) / n
= 43.626
4. Grand Total square% / Total Sample Size (Correction term)
= (28.387)° / 20 = 40.291
5. Sum of squares (Total) = (2) - (CT) =45.625-40.291=5.3340
6. S.S. (Groups) = (3) - (CT) = 43.626 - 40.291 =3.3350
7. 5.S. (Within) = SS (Total) - SS (Groups) = 5.3340 - 3.3350
=1.9990
ANOVA TABLE
Source of Varijation d.f. SS MS F
Between groups 3 3.3350 1.1117 8.9007
Within groups 16 1.9990 0.1249
Total 19 5.3340
Pyos 3,16 = 3.24
Py.oq 3»16 = 5.29
Conclusion; Since the calculated value for F (8.9007) is greater than the

significant differences between samples.

This design can be easily extended to a TWO or THREE-WAY ANOVA. Both are easy
to calculate but take time. To illustrate the point let us use data on the
oxygen consumption of two species of Timpet in three concentrations of sea-
water. The question is there a significant difference in oxygen consumption

between species and how does this vary with salinity.



Oxygen figures are in ug Oz /mg dry wi./min @ 22°C, n = 8.
FACTOR A SPECIES

FACTOR B Acmaea scabra Acmaea digitalis Total
SEAWATER

100% 7.16 8.26 6.14 6.14
6.78 14.00 3.86 10.00
13.60 16.10 10.40 11.60
8.93 9.66 5.49 .80

84.49 59.43 143.92
75% 5.20 13.20 4.47 4.95
5.20 8.39 9.90 6.49
7.18 10.40 5.75 5.44
6.37 7.18 11.80 9.%90

63.12 £58.70 121.82
50% 11#7115+10.50 .63 14.50
9.74 14.60 6.38 10.20

18.80 11.10 13.40 17.70
9.74 11.80 14 .50 1+¢112:430

97.39 98.61 196.00
245.00 216.74 461.74

1) Grand Total = 461.74
2) Sum of obs.squared = (7.16)2 + (6.78)% ...(12.30)% = 5065.1530

3) Sum of squared group to%a]s / samp1e size of groups
= {(84. 49) + (59.43) .{98.61) 2) / 8 = 4663.6317

4) Sum of squared column totais / sample size of column
= ((245. 00) + (216. 74) ) / 24 = 4458.3844

5) Sum of squared row totals / sample s1ze of row
= ((143.92)° + (121. 82)% + (196. 00)? ) / 16 = 4623.0674

6) Grand Total squared / total sample size = C.T.
= (461.74)%/ 48 4441 .7464

7) SS toral (2) - (6) = 5065.1530 - 4441.7464 = 623.4066
8) SS swgroupd3) - (6) = 4663.6317 - 4441.7464 = 221.8853
9) SS . (4) - (6) = 4458.3844 - 4441.7464 = 16.6380

10) SS 5 (5) - (6) = 4623.0674 - 4441.7464 = 181.3210



11) S ,; (8)-(9)-(6) = 2221.8853-16.6380-181.3210 = 23.9263

12) S8S .or = (7) - (8) = 623.4066 - 221.8853 = 401.5213
Source of variation df SS MS F
Subgroups 5 221.8853 44,377
Between species (A) 1 16.6380 16.638 1.74 n.s
Between salinities(B) 2 181.3210 90.660 9.48 *¥*
Species X salinities (AB) 2 23.9263 11.963 1.25 n.s
Error (within group) 42  401.5213 9.560
Total 47  623.4066

F 0.05 4 = 8.07, ,,, 0= 3.22, 0.001,,, = 8.18

Conclusion: oxygen consumption does not differ significantly between species,
but does between salinities for both species.

This test does not however, tell which means are significantly different from
each other. One can use the Least Significant Range (LSR) test.

LSR = ¢ 0.05 4, (MS within / n)
Q is a factor from Tables called the STUDENTIZED RANGE
Q 0.05 ;4 = 2.858
LSR = 2.858 (9.560 / 16)
= 2.2092
Arrange means in ascending (or descending) order
100% 75% 50%
X 71.96 60.51  98.00

As all the difference between means are greater than the calculated
significance level of 2.209 we conclude that all are significantly different.



Lecture 5:  REGRESSION AND CORRELATION ANALYSES

In regression analysis we relate one variable, the dependent (Y) to another,
the independent (X). Such techniques are used when one wishes to know

a) if Y depends on X

b) to predict Y knowing X

c) the shape of the relationship between Y and X

Example: Linear Regression analysis

X ¥
Age Length y
(months) ::: 757 er
35 114 /78
45 124 oo e
55 143 X L2327 -
65 158 44 vALLEs
75 166
V- N
Total 275 705 - Z g r
% 55 § 141 dr 45 S5 és PS
X
X% = 16125  IY? = 101341 TXY = 40155

(3X)2 / n = 15125; (3Y)2 / n = 99405; (EX)(ZY) / n = 38755
Xt = (3X)% - (ZX)¥/n
By* = (3Y)° - (BY)%/n
Bxy = EXY - (EX)(ZY)/n = 40155 - 38755 = 1380
b

i}

16125 - 15125 = 1000

101341 - 99405 = 1936

Exy / Ix% = 1380 / 1000 = 1.38
¥ =V + b(X-%) = 141 + 1.38(X - 55)

u

65.1 + 1.38x

Substitute two values in the equation

Ltet X = 50, Y = 65.1 + 1.38(50)
= 134.1
Let X =70, Y = 65.1 + 1.38(70)

161.7
But how good a fit is this line to the data points?

Here we will calculate the 95% confidence intervals for the line.



Firstly, calculate the deviations from the Tine

d,, =Y-TV

For all points this is:

d

2 2 2
- Iy® - (Exy)" / Ix

1936 - (1380)% / 1000

= 31.60
Since there are two variables X and Y this deviation has n-2 d.f. = 3.
SyJ = 31.60 / 3
= 10.53

The mean square deviation S , = ¥10.53 = 3.245

Now we need to calculate the sample S.D. of the regression coefficient b, i.e.
Sb

Sp

2
S /¥ Ix

]

3.245 //1000

0.1026

The significance of the regression can be tested using a ‘t’ test in the usual
way where t = b / S

1.38 / 0.1026

]

13.5

Pggs (3) = 3.182

Conclusion: Since the calculated value is greater than the table value we
conclude that since the regression coefficient is significantly greater than
the error term there is a significant fit to the data.

Now we must calculate the confidence 1limits:

For b 95% = t0.05,, S,

3.182 (0.1026)

0.3265
b =1.38 £ 0.3265



The s.e. of ¥ =S,/ ((I/n}) + (x* /2x%))
= 3.245 / (1/5 + x* / 1000)
={10.30 /0.2 + 0.001%
= 2.06 + 0.0103 x°

For X =35 x=X-X =35 - 55=-20
Sy =4(2.06 + 0.0103 (-20)?)
= 2.4859
For X = 55, x = 55-55 = 0
Sy =4(2.06 + 0.0103 (0)%)
= 1.4352
For X = 75, x = 75-55 = 20

Sy =1(2.06 + 0.0103 (20)%)
Sy = 2.4859

95% confidence 1imits are:

Y - t0.05 Sy to Y +t0.05 Sy

X =35
Y =Y + bx
= 141 + 1.38(-20)
= 113.4
10.05 Sy = 3.182 (2.4869)
= 7,913
= 113.4 = 7.913
X = 55
Y Y + bx

141 + 1.38 (0)
141

(LI "



£0.05 Sy = 3.182(1.4352)
4.567

141 = 4.567

—>

Y + bx

141 + 1.38 (20)
168.6

168.6 £ 7.913

n o Huou

So the confidence limits are asymmetrical, with greater chance of error the
further one is from the mean value.

Curvilinear regqressions.

For many biological phenomena the relationship between the two variables fis
not linear but curvilinear. For example the initial phases of growth of
populations of bacteria doubling in size at each time interval. Or data on
weight increases over time. The regression now is:
Weight (W) = (A)(B*), where A and B are constants.
One can use a log transformation to obtain a linear relationship where

LogW = TogA + (logB)X

The plots are shown below.
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The data are:

Age in days Dry weight W Log,, W
X {gm) Y
6 0.029 -1.538
7 0.052 -1.284
8 0.079 -1.102
9 0.125 -0.903
10 0.181 -0.742
11 0.261 -0.583
12 0.425 -0.372
13 0.738 -0.132
14 1.130 0.053
15 1.882 0.275
16 2.812 0.449

The calculations are as in the example for the linear regression
using here X and Y, the log transformed data.

We obtain Y = 0.1959X - 2.689

One of the most interesting parameters from a relationship such as that above
is the relative rate of increase

W = Ae™
where e = 2.718 the base of the natural logarithm series.
This gives us Log W = (log, W) (109,10)
= 2.3026 Tog,W
In terms of the equation above we get:

W

it

(2.3026)(0.1959)

0.451 gm per day per gm
We must also backtransform the equation
Log W = 0.159X - 2.689
antilog -2.689 = antilog {(0.311 - 3} = 0.00205
Giving: W = {0.00205)e" %%

Correlation

This is related to regression analysis and shows the degree to which two
variables are correlated together. Here there is no dependent and independent
variabie rather X, and X, instead of X and Y.



Example
Brothers height X, 71 68 66 67 70 71 70 73 72 65 66 X, = 69
Sisters height X, 69 64 65 63 65 62 65 64 66 59 62 X, = 64

n=11, Ix? =74, IxS =66, Bx;x, =39
Remember:

X, , = IX; - (BX)P/ 0 etc

ro= IXX, /Y (Ex,%)(Ex,°)

39 /Y (74)(686)

0.558
d.f. = n-2 =11-2 =9 pyq (9) = 0.602
Conclusion: Since the value is less than the table value we cannot reject the

hypothesis that there is no correlation between brothers height and sisters
height.



Lecture 6:  NON-PARAMETRIC METHODS

So far we have been dealing with analysis of quantitative data. I believe
that as far as possible one should use the parametric methods discussed
before. There is a tendency within biology today to use the argument that we
do not know if such and such a data set is normally distributed nor do we know
the relationship between the variance and mean, particularly with small
samples with which we usually work. So the decision is taken almost
exclusively to use non-parametric statistics as these do not require
distributions to be normal, nor variance be independant of the mean. I believe
that this is often a mistaken belief in that one misses much of the potential
of the data that can only be revealed by a proper parametric analysis.

It must be said, however, that non-parametric methods are in some cases as
efficient as parametric ones, save when the analyses are compiex such as ANOVA
and regression analyses.

Let us examine a few of the most commonly used:

A non-parametric 't/ test the MANN-WHITNEY ‘U’ fest.

This is a highly useful alternative to the ’‘t’ test and with almost equal
precision. The null hypothesis is that two independant random samples come
from the same populations having the same parent distribution and the same
means.

5 Counts 2,4,5,7,12

Example: Sample 1 n,

Sample 2 n, = 10 Counts 4,5,8,14,14,15,15,19,28,36

The counts are arranged in rank order from lowest to highest.
Now substitute ranks for each count giving an average rank for equal numbers.

This gives:

n, =1, 2.5, 4.5, 6, 8

n, =2.5, 4.5, 7, 9.5, 9.5, 11.5, 11.5, 13, 14, 15
Sum the ranks for each sample:
R, = 22

R,

98 Check that R, + R, = (n, + ny)(n, + n, + 1)/2

Calculate test statistics U, and U:

u

1 = nny + (ny(n, + 1)/2) - R,

= nn, + (ny(n, + 1)/2) - R,

o (=
— n
]

50 + (110/2) - 98

7

c
~n
"

50 + (30/2) - 22 = 43 Check U, + U, = 50 =n,n,



Refer to Table of U for n, = 5 n, = 10 at py o = 8

Conclusion: Here we use an unusual decision technique in that the calculated
value must be SMALLER than the table value to be significant.

We find that the smallest (U) value = 7 and since this is smaller than the
table value 8, we reject the hypothesis that the two means come from the same
population and can conclude that the mean of sampie 2 is significantly higher
than that of sample 1.

Non-parametric ANOVA: Kruskall-Wallis test.

Here the null hypethesis is that the means come from the same population.

Example: Let us take the same data as used in the parametric test. Firstly,
we arrange the data in ascending order within samples.

Samples stn. 1) 98, 22, 72, 214, &7
stn. 2) 12, 13, 46, 38, 49
stn. 3) 86, 12, 49, 33, 72
stn. 4) 2, 5, 12, 3, 19

Now rank all the above in ascending order: .
Total n;  (R,°/n;)

1
stn. 1) 19, 9, 16.5, 20, 15 R, 79.5 5 1264.05
stn. 2) 5, 7, 12, 11, 13.5 R, 48.5 5 470.45
stn. 3) 18, 5, 13.5, 10, 16.5 R 63 5 793.80

stn. 4) 1, 3, 5, 2, 8 R, 19 5 72.20

Total R= 210 N= 20 2600.50
Calculate K statistic

K= (12 / (N(N + 1))(E(R)® / ny) - 3(N + 1)

(12 / 20(21))(2600.5) - 3(21)

= 11.3
Refer to Tables of chi® for v =14 - 1 d.f. =3
Poos = 7-813  Pgg = 11.2

Conclusion: Since the calculated value is greater than the table value at
p0.01 we reject the hypothesis (with 99% certainty) that the means are from
the same population.



Non-parametric Two-Way ANOVA: The Friedman test.

This test is used in COMBINATION with the Kruskal-Wallis test under defined
conditions. The number of counts in each sample must be the same and each
count must belong to one sample and one group, where the group can represent
different bottom types, different samplers or different workers. In the
previous example Tet us assume that the four samples were each counted by five
different workers and we are therefore, interested to know if there is also
a significant difference between workers. The H, is that there 1is no
significant difference between workers.

Example: 4 sample i = 4, 5 workers n = 5

Worker
1 7 3 4 5
Sampie 1 a8 22 72 214 67
Sample 2 12 13 46 38 49
Sample 3 86 12 49 33 72
Sample 4 2 5 12 3 19

Firstly arrange samples by rank in each row:

Sample 1 4 1 3 5 2
Sample 2 1 2 4 3 5
Sample 3 5 1 3 2 4
Sample 4 1 3 4 2 5
Total 11 7 14 i2 16

R4 Rz Rz R, Rs

R, = 60 ZR.Z = 766

S = IRy - ((ZRn)? /)
= 766 - (60%)/5 = 46
n=>5 1=4

So we must calculate a chi’ value where:

]

chi? 128/ (in(n + 1})

12(46) /4*5(6)
4.6

chi? for v = n-1 d.f. = 4 for Po.os= 9.49

Conclusion: As the calculated value is less than that of the Table value we
cannot reject the null hypothesis that there was no significant difference
between workers.



Non-parametric Correlation fests.

1. Spearman’s rank correlation.

Here we first simply rank the two sets of data.

Example: Sampie 1 Sample 2 (Difference)2

4 4 0
1 2 1
6 5 1
5 6 1
3 i 4
2 3 1
7 7 0

Total 8

1- (62d?) / (n{n® - 1)
1 - 6(8) / 7(49-1)

]

Calculate rg

0.857

This value is tested against the Table value for the Correlation Coefficient
{r). d.f. =n -1 =6 pgos= 0.707.

Conclusion: As the calculated value is greater than the Table value we reject
the H, that there is no correlation between the two data sets.

This test is calculated to be 90% as efficient as the parametric test.

2. Kendall’'s tau.

Here the two ranks are set alongside each other:

Sample 1 Sample 2 No. of ranks < pivotal rank
1 2 1
2 3 1
3 1 0
4 4 0
5 6 1
6 5 0
7 7 0

—
o
puri
fu
—

e
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S
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Tau = 1 - (4(Q)) / (n(n - 1))
=1 - (4%3 / 42)
= 0.714

We Took up the Table of the Correlation Coefficient (r) for d.f. 6 and po.os
= 0.707

Conclusion: Since the calculated value is greater than the Table value we
reject H, that there is no correlation between the two data sets.

References:
General texts. One of the following three is required:

Snedecor, G.W. and W.G. Cochran (1980), Statistical Methods. 7th ed. Iowa
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Sokal, R.R. and F.J. Roh1f (1981), BIOMETRY, 2nd ed. W.H. Freeman & Co., San
Francisco, 859 pp.

Zar, J.R. (1984), Biostatistical Analysis, Prentice-Hall.

Statistical tahles: One set is needed

Snedecor & Cochran and Zar include tables in their books. Roh1f and Sokal has
separate (and expensive) tables.

Roh1f, F.J. and R.R. Sokal (1984), Statistical Tables. W.H. Freeman
Neave, H.R. (1978), Statistical Tables Allen & Unwin. {Cheap!}

Excellent book on analysis of field samples:

Elliott, J.M. (1971), Statistical Analysis of samples of Benthic
Invertebrates. Fresh Water Biological Association, Windermere, U.K,






PART 11






LECTURE 1
A FRAMEWORK FOR STUDYING CHANGES IN COMMUNITY STRUCTURE

STAGES

1) REPRESENTING COMMUNITIES (graphical description of faunal relations).

2) DISCRIMINATING SITES on the basis of faunal compoesition (e.g.
spatial: control v. impacted, temporal: before v. after impact).

3) DETERMINING LEVELS OF "STRESS" or disturbance in communities.

4) [INKING WITH ENVIRONMENTAL VARIABLES (e.g. correlating to
contaminants})

5) ESTABLISHING CAUSALITY of link to contaminants.

TECHNIQUES

UNIVARIATE - diversity indices
- indicator species abundance

DISTRIBUTIONAL - "ABC" curves {k-dominance}
- distn. of individuals amongst species

MULTIVARIATE - triangular matrix of similarities between samples,
leading to:
- hierarchical classification (CLUSTER)
- multidimensional scaling (MDS)
- principal component analysis (PCA)

UNIVARIATE TECHNIQUES

EXAMPLES
Diversity Indicator
indices species
STAGES
1) REPRESENTING Means t confidence intervals
COMMUNITIES (CIs for each site)
2) DISCRIMINATING One-way analysis of variance
SITES (ANQVA)
3) DETERMINING By reference to historical data, e.g.
STRESS LEVELS ultimately a initial increase
decrease in in "opportunist"
diversity species
4) LINKING TO Regression techniques

ENVIRONMENT



5) ESTABLISHING
CAUSALITY

Mesocosm or field experiments with
controlled dosing of contaminants.
A1l entries above apply, e.g. now
significant discrimination of "sites"
(=treatments) demonstrates  that
contaminant causes biological effect.

I0C/GEEP WORKSHOP ON BIOLOGICAL EFFECTS OF POLLUTANTS

0SLO 1986: MACROFAUNAL DATA, Gray et al. (1988)

LANGESUNDBUKTA

Fig. 1.1 Frierfjord and Langesundfjor, Norway. Benthic community sampling
sites (A-G) for the Oslo Workshop



Four 0.1 m° Day grab samples taken at 6 sites (A-E, G), sieved at 1
mm, and counts/biomass recorded of 110 species identified.

Table 1.1

Macrofaunal abundance matrix {part), numbers per 0.1 me.

Species A B

Cerianthus 1loydi
Halicryptus sp.
Onchnesoma
Phascolion strombi
Golfingia sp.
Holothuroidea
Nemertina, indet.
Polychaeta, indet.
Amaena trilobata
Amphicteis gunneri
Ampharetidae
Anaitides groenlandica
Anaitides sp.

CcCooOoO~OLOoOQOoOOoOoO
OO OOoOOOOOO
COoOO0OO—MONOOOODO
OOOOQOOMOO—OH—O
O PpPOOSCODO0O0O
COQOoOO0OOMODODOOO
CO0OOH L0000 O0O
OO0 O~NMOCOQOO

Table 1.2

Macrofaunal biomass matrix (part), mg per 0.1 m°.

Species A B

Cerianthus 1loydi/10 0 0 0 0 0 0 0 0
Halicryptus sp. 0 0 0 26 | 0 0 0 0
Onchnesoma 0 0 0 0 0 0 0 0
Phascolion strombi 0 0 0 6 0 0 2 0
Golfingia sp. 0 0 0 0 0 0 0 C
Holothuroidea 0 0 0 0 0 0 0 0
Nemertina, indet./10 ! 41 391 1 5 1 2 1
Polychaeta, indet. 9 0 0 0 0 0 0 0
Amaena trilobata 144 14 234 0 0 0 0 0
Amphicteis gqunneri 0 0 0 0 45 O 0 0
Ampharetidae 0 0 0 0 0 0 0 0
Anaitides groenlandica 0 0 0 7 11 0 0 0
Anaitides sp. 0 0 0 0 0 0 0 0




UNIVARIATE: REPRESENTATION AND DISCRIMINATION
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Fig. 1.2 Frierfjord macrofauna. Means and 95% confidence intervals for two

indices. a) Number of species (S); b) Shannon diversity (H')



DISTRIBUTIONAL TECHNIQUES

EXAMPLES

"ABC" curves Distribution
(k-dominance of individuals
curves) amongst species

STAGES

1) REPRESENTING Curves for each site
COMMUNITIES {or preferably replicate)

2) DISCRIMINATING ANOSIM (Analysis of Similarities)

SITES test on "distances" between every
pair of curves

3) DETERMINING
STRESS LEVELS

Biomass curve
drops below
numbers curve
when subject
to disturbance

Species abundance
distribution is
less "smooth”
with disturbance

4) LINKING TO Possible for univariate summary
ENVIRONMENT statistics by regression

5) ESTABLISHING Mesocosm or field dosing
CAUSALITY experiments. Entries above apply

ORGANIC ENRICHMENT OF BENTHOS - Pearson (1975)

LOCH LINNHE (SCOTLAND) MACROFAUNA - discharges started in 1966,
increased 1970, decreased 1972.



Fig. 1.3 Loch Linnhe and Loch Eil, showing site 34, sampled over 1963-1973

Table 1.3

Numbers/biomass matrix (part) for site 34 - one (pooled) set
of values per year (1963-1973).

Species 1963 1964 1965 1966

No. Wt. No. Wt. No. Wt. No. Wt.

Mol lusca

Scutopus ventrolineatus Salvini-Plawen
Nucula tenuis (Montagu)

Mytilus edulis L.

Modiolus sp. indet. - 3 =
Thyasira flexuosa (Montagu) 93 3.57 210 7.98 28 1.06 137 5.17
Myrtea spinifera (Montagu) 214 | 27.39 136 17.41 2 0.26 282 | 3s6.10
Lucinoma borealis (L.) 12 0.39 26 1.72 E - 22 0.73
Montacuta ferruginosa {Montagu) 0.00 S = s
Mysel la bidentata (Montagu) -

Abra sp. indet.
Corbula gibba (Olivi)
Thracia sp. Tndet.

LI ¥

c.0 13 0.07 16 0.10 61 0.064

—_

0.13 0.54 2 0.13
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DISTRIBUTIONAL: REPRESENTATION AND STRESS DETERMINATION
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Fig. 1.4 Loch Linnhe site 34. (A) Shannon diversity. (B)-{L) ABC curves
for 1963-73: biomass (x), numbers (0). Warwick {1986)
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DISTRIBUTIONAL: REPRESENTATION AND STRESS DETERMINATION

NUMBER OF SPECIES
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Frierfjord macrofauna, sites A-E,G. Number of species against

number of individuals per species in geometric classes (I =
individual per species, II = 2-3 ind. per spp., III = 4-7, IV
Gray et al.

8-15 etc.).

1
(1988) )



MULTIVARIATE TECHNIQUES

STAGES

REPRESENTING
COMMUNITIES

DISCRIMINATING
SITES

DETERMINING
STRESS LEVELS

LINKING TO
ENVIRONMENT

ESTABLISHING
CAUSALITY

EXAMPLES
Hierarchical MDS PCA
clustering ordination ordination
Dendrogram Configuration of
of replicates replicates (often 2-D)
ANOSIM test on triangular Multinormal
matrix of similarities tests (e.qg.
Similarity percentage Wilks’ A),
breakdown {SIMPER) gives but often
species responsible invalid

Not appropriate

Visual (superimposing environmental variables on

faunal ordinations}. Finding subset of environmental
variables whose ordination "best" matches the faunal
ordination.

Mesocosm or field dosing experiments. Use above
techniques - significance in discriminating ‘“sites"
(=treatments) establishes causality.



MULTIVARIATE: REPRESENTATION

Table 1.4
Frierfjord macrofauna counts. Similarities (Bray-Curtis

coefficient, after ¥/ transformation) between every pair
of replicates (sites A-C only).

Al A2 A3 A4 Bl B2 B3I B4 CI C2 C3 C4

Al -
Az 61 -
A3 69 60 -

cz2 40 34 26 29 48 69 62 56 56 =
c3 40 31 37 39 59 61 67 53 40 66 -
C4 36 28 34 37 65 55 69 55 38 64 74 -

-
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Fig. 1.6 Frierfjord macrofauna. Dendrogram for hierarchical clustering
(group-average 1ink) of 4 replicates from 6 sites, using above
similarities
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MULTIVARIATE: REPRESENTATION AND DISCRIMINATION

Fig. 1.7 Frierfjord macrofauna. Non-metric MDS ordination (in 2-D) of the
4 replicates from each of sites A-E and G, from Table 1.4
similarities

LDCH LINNHE 1963-1973
3 — 56
67
e ~4 72 g8
L 71
69
o 63
| 73
65
i 64
70
7% [ S et e’ s N A N = R
Fig. 1.8 Loch Linnhe macrofauna. PCA ordination {in 2-D) of the 11 years

abundance data, omitting the less-common species



MULTIVARIATE: LINKING TO ENVIRONMENT
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Fig. 1.9 Frierfjord macrofauna. Values of four environmental variables:
(a) water depth, (b) sediment grain size, (c) metal and {(d) PAH
concentrations in sediment, superimposed on the abundance-based

MDS



NUTRIENT ENRICHMENT MESOCOSM EXPERIMENT

- Gee et al. (1985)

Meiofaunal abundances under 2 dosing regimes, Solbergstrand facility
(NIVA), Norway

Table 1.5

Copepod numbers (nematodes not shown) from 4 boxes for each
treatment (high, low and no additions of
powdered Ascophyllum nodosum).

Control Low dose High dose

cr|)c2|(ec3)es| U1 L2 | L37] L& | H1| H2 H3 | Hé

Copepoda, Harpacticoida

Ectinosomidae
Halectinosoma gothiceps - - 1 1 16 23 3 16 - 1 = =

Tachidiidae
Danielssania fusiformis 1 1 1 1 1 3 8 5 1 - - 3

Tisbidae
Tisbe sp. 1 (gracilis group) a
Tisbe sp. 2 (graciloides?} =
Tisbe sp. 3 S
Tishe sp. 4 =
Tisbe sp. 5 =

27y 1191 3
45| 22| 39| 25
8| 83| 88 3
1511 249 | 264 | 87
= -1 129 = -1 115

29 20

34

[ T S T |
[ R S |
LI T

RO N

Diosaccidae
Typhlamphiascus typhlops

Bulbamphiascus imus
Stenhelia reflexa

Amphiascus tenuiremis

oaa N
s o4 om
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Ameiridae
Ameira parvula - . - - 4 2
Proameira simplex = = = = = 2 .

W
g
[h¥}

1
—
(%]

Paramesochridae
Leptopsyl lus paratypicus - - 1 - = - - - = = = -

Cletedidae
Enhydrosoma tongifurcatum 2 2 1 2 3 1 - - - = = =

Laophontidae
Unidentified copepedite - = = = = = 1 = = S = =

Ancorabolidae
Ancorabolis mirabilis 3 - 4 4 2 18 3 3| 27 3 1 -

Unidentified
Copepodites a - 1 = 1 1 1 3 - = = =
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MULTIVARIATE: ESTABLISHING CAUSALITY
Nematodes
n B
4 e
: A
. =
=
|
A
Copepods @0
®
A
A A A
Fig. 1.10 Mesocosm meiofauna (nutrient enrichment). MDS ordination of

abundances from 4 replicate boxes from 3 treatments: circles =
control, squares = low dose, triangles = high dose. (Gee et al.,

1985)



DATA TRANSFORMATION AND SPECIES SELECTION/AGGREGATION

Some techniques may need TRANSFORMATION of the raw abundances/biomass
(or derived statistics) for:

a) validity of assumptions for statistical analysis (e.g. normatlity,
constant variance);

b) balancing contributions of rare/abundant species.
Some techniques may be possible with data on SELECTED {more dominant)

species or data AGGREGATED to higher taxonomic Tlevels, thus minimising
identification time.

SELECTION/
TECHNIQUE EXAMPLES TRANSFORMATION AGGREGATION
Diversity Counts: No No
indices Index: Possibly
UNIVARIATE
Indicator Yes (on counts/ Yes
species biomass)
ABC curves Possible but Possible
not usual
DISTRIBUTIGNAL
Ind. among No No
species
Cluster Usual (log or Possible
4th root) on
MULTIVARIATE MDS counts/biomass Possible
MDS transforms
PCA similarities Needed

also, to ranks.




LECTURE 2
MULTIVARIATE METHODS: MEASURES OF SIMILARITY OF
SPECIES ABUNDANCE/BIOMASS BETWEEN SAMPLES

DATA MATRIX: A p (species) x n {samples} array of scores (counts or
biomass). The n samples might consist of a number of replicates (possibly
only one) at each of a number of sites or times.

SIMILARITY COEFFICIENT: Measures the similarity (S) of the community
structure between any pair of samples (thus SAMPLE SIMILARITIES), using:
a) absolute numbers {(or biomass) of each species,

b) relative numbers {or biomass), i.e. STANDARDISE the scores, to
reflect only species COMPOSITION (%),

c) only presence or absence of each species.

S is usually defined in the range (0, 1) or (0, 100%).

1 (or 100%) means samples are totally similar,
0 means sampies are totally dissimilar.

S
S

SIMILARITY MATRIX: This is a set of similarity coefficients,
calculated between every pair of samples and laid out in a Tower triangular
array.

Similarity matrices are the basis for many clustering and ordination
techniques {REPRESENTATION) and associated tests (DISCRIMINATION), which:

a) discriminate sites or times (similarities between replicates at
a site > similarities between sites)

b) cluster sites (similarities within groups of sites > similarities
between groups)

c) allow gradation of sites (site A has similarities with B, and B
has with C, but A and C Tess similar).

SPECIES SIMILARITY MATRIX: A matching triangular array of similarities
between every pair of species, in terms of patterns of occurrence across the
samples.

Many different ways to assess similarity (because data is multi-
species). One of the most useful in ecology is:



BRAY-CURTIS COEFFICIENT: (Bray and Curtis, 1957).
Similarity between jth and kth samples is:

2:;4 |}Qj - }Ek|}

8, = 100 {1-
Jk F)
so1 Vi3 * Vi)
(2.1)
© . 2 min( )
= 100 2 2 MRy
2
Ei=1 (yij + Vig)
where y.. = score (count or biomass) for ith species in Jjth sample

(1=1,2,...,p: j = 1,2,...,n).

Example: Loch Linnhe macrofauna (Pearson, 1975).

Table 2.1

(a) Abundance (untransformed) for some selected species
and years from site 34 data. (b) Resulting Bray-Curtis
similarity matrix.

(a) Year: 64 68 71 73 (b)

(Sample: 1 2 3 4) Sample 1 2 3 4
Species | -
Echinoca 9 0 0 ] 2 8 -
Myrioche 19 0 0 3 3 0 42 -
Labidopl. 9 37 0 10 4 39 21 4 -
Amaeana 0 12 144 9
Capitella 0 128 344 2
Mytilus 0 0 0 0
1} Note S = 0 if the two samples have no species in common (e.g. 1 and
3 above).
2) A scale change in y (e.g. biomass changed from mg per m° to per sz)
does not change S.
3) "Joint absences" also have no effect on S {as is desirable), e.g. can

omit species 6 in the table.

With "raw" counts (or biomass), S gives too much weight to Tlarge
scores, so a log(l+y) or VVy transform is often applied, before computing S.



Example: Loch Linnhe macrofauna, v/ transformation

Table 2.2

{(a) ¥/ - transformed abundances for 4 years.
(b) Resulting Bray-Curtis similarity matrix.

(a) Year: 64 68 71 73 (b}

(Sample: 1 2 3 4) Sample 1 2 3 4
Species 1 o
1 1.7 0 0 0 2 26 -
2 2.1 0 0 1.3 3 0 68 -
3 I 2.5 0 1.8 4 52 €68 42 -
4 0 1.9 3.5 1.7
5 0 3.4 4.3 1.2
6 0 0 0 0
CANBERRA COEFFICIENT: Lance and Williams, 1967.
Similarity between samples j and k is:
- -1 P |.Vij = Vil
Sy =100 f1-p ™t Y 7 SR } (2.2)

It gives a more equal contribution from each species (so tends to be
overdominated by rarer ones).

CORRELATION COEFFICIENT: Product-moment correlation

Ei (Yij"fj) (yik—-}}-.k)

rjk= = = — (2.3)
{ [Ei (¥137Y.4) -Zi (V=¥ i) *]
is not a similarity (it can be <0). Use:
S; = 90 {1 + rjk) (2.4),

but note that S increases with more joint absences.



PRESENCE/ABSENCE DATA

Many similarity coefficients have been proposed based on (0,1) data

arrays (Sneath and Sokal, 1973). For comparing samples j and k let:

b+c
d

number of species present in both samples,
number present in one sample and not the other,
number absent from both samples.

"SIMPLE MATCHING" COEFFICIENT:

Sjk = 100.{a+d)/(a+b+c+d) {2.5)

Note that this is a function of joint absences (d).

JACCARD’S COEFFICIENT:

S;c = 100.a/{a+b+c) (2.6)

SORENSEN (OR DICE) COEFFICIENT:

Sjp = 100.2a/(2a+b+c) (2.7)

This is simply BRAY-CURTIS applied to (0,1) data.

McCONNAUGHEY COEFFICIENT (McConnaughey, 1964):

S; = 100[a(2a+b+c)]/[2(a+b)(a+b)] (2.8)

RECOMMENDATION:

1) Use coefficient not dependent on joint absences.

2) Similarities from raw counts (or biomass) are too dominated by common
(or large) species, but

3) Reduction to presence/absence loses too much useful information, so
recommend use:

4)' BRAY-CURTIS on VV{y or log(l+y) transformed data.

5) Standardise scores if non-comparable sample volumes used, or if

"patchiness" makes compositional change more relevant than
fluctuations in absolute counts.

SPECIES SIMILARITIES: These are computed from the same data array but

between any pair of species (rows 1,1 say) across all samples (columns}).

BRAY-CURTIS: 54 =100 {1-

E:;ll|JEj'Jﬁj|} (

P AVt Y)
Jui Yii*¥ 134

2.9)



However:

1} Similarities between rare species have Tittle meaning (S’ usually 0)
and should be omitted from any species clustering or ordination.

2) Standardisation {not transformation) of y needed:

y;j = 100 yij/ (E,:ﬂ. yik) (2.10)’

(before computing S’), so two species in strict ratio across samples are
“perfectly similar".

Example Counts Similarities
Sample: 1 2 3 4 5 Species 1 2 3
Species 1 -
2 0 0 4 4 —> 2 33 -
2 10 0 © 20 20 3 20 7 -
3 0 4 4 1 1
Standardise
v

Species 1 -

1 20 0 0 40 40 ——> 2 100 -

2 20 0 0 40 40 3 20 20 -

3 0 40 40 10 10

CORRELATION coefficients are more appropriate for species similarity,
since they incorporate scale changes, but the Tocation changes are
undesirable.

RECOMMENDATION: For species similarities, use BRAY-CURTIS on
standardised scores. Remove rarer species (never >3%, say, of total score in
any sample).

DISSIMILARITY COEFFICIENTS

These are important in constructing ordinations, in which
dissimilarities (§) between pairs of samples are turned into distances (d)
between sample locations on a "map". (8 therefore >0, of course).

Similarities can easily become dissimilarities, by:

8 =100 - S (2.11},



e.g. for BRAY-CURTIS:

Fo
E ] =
8, = 100, == 1743 x| (2.12)

J
Zil (Yij it yik)

so 6=0: no dissimilarity, 8=100: total dissimilarity.
Other dissimilarity measures, based on distances:

EUCLIDEAN DISTANCE:

djg = s/[Ef..l (¥ig = Yu)*] (2.13)

MANHATTEN (or CITY-BLOCK) DISTANCE:

dyy = Eil |¥i5 = ¥l

(2.14)
Sp. 2 | 3 —— Euclidean
 Example: 3 - X — — Manhatten
Sample: J k _: !
1 2 5 | | k
Sp.
"2 3 1 -] ===
|
7 ') [ r !
2 3 Bp. 4

[METRICS: Euclidean and Manhatten measures, (2.13) and (2.14), are
called distances or metrics because they obey the triangle inequality, i.e.
for any three samples, J,k,r:

r

dy +d. 2 d (2.15)

Note: Bray-Curtis dissimilarity does not satisfy the triangle
inequality, so should not be called a "metric". However, many useful
dissimilarities are also not metrics (e.g. squared Euclidean distance, giving
dissimilarities of the same rank order as Euclidean distance, i.e. identical
MDS ordinations).

CONCLUDE: Unnecessary to insist that dissimilarities are true
"metrics".]



Where necessary (e.g. for input to clustering), distance (d) can be
conveniently converted to similarity (S) by:

§ = 100/(1 + d) (2.16),

and, using (2.11), distance (d) turned to dissimilarity (8) by

& = 100d/(1 + d) (2.17).

So, d = 0 gives 8 =0, S =100, and d ~ = gives & - 100, S - O.

However, note that EUCLIDEAN (or MANHATTEN) distance is the same if
a species is absent in both samples or is present in both at the same
abundance; this is undesirable. (Same problem as that of similarities based
on correlation being dependent on joint absences.) So:

RECOMMENDATION: For clustering or MDS of species counts/biomass, use
Bray-Curtis dissimilarities, after suitable transformation, rather than
Euclidean {or Manhatten} distances.

1 n 2 n 3 4
Raw Transformed Similarity
P Data p Data n Matrix ———

\ / d Classification

Ordination

Fig. 2.1 Stages in a multivariate analysis based on (dis)similarity
coefficients



LECTURE 3
MULTIVARIATE METHODS: HIERARCHICAL CLUSTERING

Table 3.1
Frierfjord macrofauna counts. Similarities (Bray-Curtis coefficient,

after ¢/ transformation) between every pair of replicates
(sites A-C only).

Al A2 A3 A4 Bl B2 B3 B4 C1 C2 (3 (4

Al .
A2 6l =
A3 69 60 -

cz 40 34 26 29 48 69 62 56 56 =
3 40 31 37 39 59 61 67 53 40 66 =
c4 36 28 34 37 65 55 69 55 38 64 4 -

Seeing structure in a similarity matrix is difficult - a graphic
representation of relations is needed:

CLUSTER ANALYSIS Clustering (or classification) aims to find "natural
groupings" of samples such that samples within a group are more similar than
samples in different groups. Use clustering to:

1) Distinguish sites (or times) - replicates within sites fall in the
same cluster;

2) Partition sites (or times) into groups;

3) Define species assemblages (spp. co-occur at sites)

Hundreds of clustering methods exist (Everitt, 1980), some operating
on (dis)similarities, some on raw data. Cormack (1971) warns against
indiscriminate use: "availability of ... classification techniques has Ted to
the waste of more valuable scientific time than any other ‘statistical’
innovation".

Five classes of clustering methods can be defined:

1) Hierarchical, 2) Optimising, 3) Mode seeking, 4) Clumping and 5)
Miscellaneous techniques.

Here consider only one (sub)class, which recognises that clustering
can occur at several Tevels.



HIERARCHICAL AGGLOMERATIVE CLUSTERING: The n samples are successively
fused into groups, starting with samples with the highest mutual similarities
then gradually lowering the similarity level at which groups are fused, and
ending in a single cluster. (DIVISIVE clustering is the opposite sequence).

Process represented by a tree diagram or DENDROGRAM.

DISTINGUISHING SITES: Frierfjord macrofauna counts.
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Fig. 3.1 Frierfjord macrofauna counts. Dendrogram for hierarchical
clustering (using group-average linking) of 4 replicates from
each of sites A-E,G, using Bray-Curtis similarity matrix (Table
3.1)

GROUPING TIMES: Loch Linnhe macrofauna - subset. After ¢
transformation, data array and bray-Curtis similarity matrix are:



Year: 64 68 71 73 Sample 1 2 3 4
Sample: 1 2 3 4 1 -
Species 2 25.6 -
Echin. 4 ;7 0 0 0 3 0.0 67.9 -
Myrio. 2.1 0 0 1.3 4 52.2 68.1 42.0
Labid. 1:1 2.5 0 1.8
Amaea. 0 1.9 3.5 iz | 2 & 4 fused
Capit. 0 3.4 4.3 1.2 v
Mytil. 0 0 0 0 Sample 1 284 3

1 =

284  38.9 -
Samples 2 and 4 have the highest 3 0.0 55.0 -
similarity, S{2,4), so they form
the first group. |  (2&4) & 3 fused

v
Sample 1 28334

Their similarity to (say) sample 1 -
1 defined in one of 3 ways: 28384 25.9 -
a) SINGLE LINKAGE: max{S{1,2), S(1,4)} (=52.2)
b) COMPLETE LINKAGE: min{S(1,2), S{1,4)} (=25.6)
c) GROUP AVERAGE LINK: [S(1,2) + S(1,4)]1/2 (=38.9)

(Average weighted by number of samples in groups fused, e.qg.
S(1,283&4) = {2x38.9 + 1x0)/3 = 25.9).

26 —| |
Similarity | | |
58 il | |
68 _I i | |
| | I l
100 | | | | |
Sample 2 4 3 1
Note:
1) Samples need to be reordered for clear presentation of the dendrogram
(so there are no crossing lines).
2) The order of samples on the x axis is not very meaningful (think of

a dendrogram as a "mobile").



3) Here clustering imposes a (somewhat arbitrary) grouping on what is
essentially a continuum (clean (1), impacted (2 and 3) and some
recovery (4)), so:

4) Small changes in similarities can have larger effects on picture
(e.g. reverse 5(2,3) & S(2,4)).

DISSIMILARITIES: Exactly converse operations needed for a
dissimilarity matrix, i.e. fuse samples with lowest dissimilarity, take
minimum dissimilarity in single linkage, maximum in complete linkage.

LINKAGES: These three options are best visualised for an example with
only 2 species and dissimilarity defined simply from Euclidean distance.

Sp.2 Group 1 Group 2 X : samples (2 groups)
X — : single link
X X X X (from gp.1 to 2)
X ==m-mmmmmmrmmao - X -- : complete link
Sp.1 )

Group average is mean of all 12 intergroup distances.

Exptains why alternative names for the linkages are:

"NEAREST NEIGHBOUR"
"FURTHEST NEIGHBOUR"

single linkage
complete linkage

Note: Though single linkage has some nice theoretical properties (e.q.
clustering only a function of rank order of similarities), it has a tendency
to give chains of linked samples rather than clear groups; group average
linking is usually preferable.



Example: Bristol Channel (UK) zooplankton, April 1974, 57 sites X 24
species, Collins and Williams (1982).
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Fig. 3.3 Bristol channel. Dendrogram for hierarchical clustering of 57
sites (group average linking of Bray-Curtis similarities on V-
abundance)



RECOMMENDAT IONS

Hierarchical clustering (with group average linking) on sampie
{(dis)similarity matrices can be useful, especially to delineate discrete
communities at differing sites (or groups of sites).

It is less useful {and can be misleading) for a gradation in community
structure across sites or times; ordination is preferable for this (see
lectures 4 and 5).

Clustering is best used in conjunction with an ordination (even for
discrete communities), for example, by superimposing clusters on the sample
ordination plot.



LECTURE 4

MULTIVARIATE METHODS: ORDINATION OF SAMPLES BY
PRINCIPAL COMPONENTS ANALYSIS (PCA)

ORDINATIONS: These are techniques for MAPPING the SAMPLES in a low
number of dimensions (usually 2) such that the DISTANCE between samples
attempts to reflect (DIS)SIMILARITY in community structure. (No guarantee
that the attempt will succeed, if the relationships between the samples are
complex, i.e. the structure is essentially "high-dimensional®.)

Again there are many methods, for example:

PRINCIPAL COMPONENTS ANALYSIS (PCA, e.g. Chatfield & Collins, 1980},
PRINCIPAL CO-ORDINATES ANALYSIS {PCoA, Gower, 1966),

DETRENDED CORRESPONDENCE ANALYSIS (DECORANA, Hill & Gauch, 1980},
NON-METRIC MULTIDIMENSIONAL SCALING (MBS, e.g. Kruskal & Wish, 1978).

Here we consider only PCA (a simple but rather Timited method) and MDS
(a more complex algorithm but simple in concept and very generally
applicable).

PRINCIPAL COMPONENTS ANALYSIS

STARTING POINT is the original DATA MATRIX (rather than a similarity
matrix). The data array is thought of as defining the positions of samples in
relation to axes representing the full set of species (one axis for each
species). The samples are thus POINTS in a very HIGH-DIMENSIONAL SPACE, so it
helps to visualise the process by considering an example in which there are
only two species, i.e. each sample is a point in 2-dimensions.

Examplie:
Sample: 1 2 3 4 5 6 7 8 9

Abundance Sp.1: 6 0 5 7 11 10 15 18 14
Sp.2: 2 0 8 6 6 10 8 14 14



Sp-2 | g 8 (This is an ORDINATION already - of
{ 2-d data in 2-d, thus perfectly
10 —| 6 summarising all the relationships
between samples).
| 3 7
I 4 5 T .
For a 1-d ordination (i.e. a genuine
| ordering of samples) could take just
| 1 one variable (Sp.l, say):
0 —|2
I
] ¥ ! ?
0 S5 10 15 sp.l
Sample 2 3 1 4 6 5 g 7 8
X X X X Kise X=X X Sp.1
0 5 10 15 20

but this is poorer approximation to relations beiween samples than given by
a (perpendicular) PROJECTION onto the line of "best fit" in the 2-d plot:

Sample 2 1 34 5 6 7 9 8
X X XX X X X X X PC1

! 7 ! ! I

This is 1st PC AXIS; PC2 AXIS is PERPENDICULAR to this

pCc2 3 9

PC1

PC AXES (full set) are simply a ROTATION of original species axes.
Refer samples to (PCl, PC2) rather than (Sp.1, Sp.2) axes because may be able
to DISPENSE WITH PC2, giving an ordination in 1-d.

Biggest differences between samples take place along PCl, and this is
an equivalent definition of PCl - the axis along which VARIANCE IS MAXIMISED.



Example: Add a third species to previous example.

Sample: 1 2 3 4 5 6 7 8 9
Abundance  Sp.l: 6 0 5 7 11 10 15 18 14
Sp.2: 2 0 8 6 6 10 8 14 14
Sp.3: 3 1 6 6 9 11 10 16 15

Samples are now points in 3-d and there are 3 PC axes, again a
rotation of the 3 species axes, such that:

PCL: Axis which MAXIMISES VARIANCE of points PROJECTED PERPENDICULARLY
onto it.

PC2Z: Constrained to be perpendicular to PCl, again chosen o maximise
variance along this axis.

RESE Perpendicular to PC1 and PC2.

The new variables (PCs) are then just LINEAR COMBINATIONS of the old
ones (species), such that PC1l, PC2, PC3 are UNCORRELATED.

Here, the three PCs are:

PCl = 0.62 x Sp.1 + 0.52 x Sp.2 + 0.58 x Sp.3
PC2 = -0.73 x Sp.1 + 0.65 X Sp.2 + 0.20 x Sp.3 (4.1)
PC3 = 0.28 x Sp.1 + 0.55 x Sp.2 - 0.79 x Sp.3

Letting var(PCi) = variance of samples on ith PC axis,
var{Sp.i) = variance on ith species axis (i-1,2,3):

I, var(PCi) = E; var(Sp.1i) (4.2)
so % OF (original) VARIANCE EXPLAINED by ith PC is:

var{PCi) / &, var(PCi) (4.3).

Here PCl explains 93%, PC2 6% and PC3 1% of variance. Little
variability {information) in PC3. Ignore it, so

PCA ORDINATION: The PC1 and PC2 axes give a 2-d ordination plane (of
"best fit" to the sample points) and points are projected perpendiculariy onto
this from the higher PCs (just PC3 here). In this case, the 2-d ordination
is almost a perfect summary of the 3-d data (the sample points lie near to a
plane in the original 3-d species space).




HIGHER-DIMENSIONAL DATA: Typically, there are many more species (say
30+) but the approach is identical. Samples are points in the 30-d (say)
species space; the "best-fit" 2-d plane is found and samples projected onto
it to get the 2-d PCA ordination. Success is measured by the % of the
variability explained by the first 2 of the 30 PCs.

COMPUTATION: Construction of PCs requires derivation of eigenvalues
and vectors of a pxp matrix (p = no. of species), e.g. Chatfield and Collins,
1980 (note: knowledge of matrix algebra essential). Problems if p is Targe
(compared with no. of samples), so:

EXCLUDE LESS-COMMON SPECIES: These distort ordination badly (even if
the matrix operations are possible). E.g. for Loch Linnhe data, the PCA
ordination (Fig. 4.1) excludes species making up <3% of total counts at any
site, leaving 29 species from 115.

TRANSFORM REMAINING ABUNDANCES (/BIOMASS) before applying PCA, to
avoid over-domination by the very common species. E.g. in Loch Linnhe data,
Capitella counts go over 4000; Fig. 4.1 uses {V transform.

Example: Loch Linnhe macrofauna (site 34, 1963-1973).

LOCH LINNHE 1S83-1973

. 66
| 67
. 72 68
71
- 69
63
0. —
-, —
73
-, —
65
. 64
70
[N SOV YR PSS P T SRS I S SO N I B

Fig. 4.1 Loch Linnhe abundances. 2-d PCA ordination of samples from 11
years; PCl (x axis) and PC2 (y axis) account for 57% of total
sample variability



SCALE AND LOCATION CHANGES: Data often NORMALISED ({(after any
transform). For each species subtract the mean (across sites) and divide by
the standard deviation. Equivalently, extract eigenvalues of the correiation
rather than the covariance matrix, i.e. CORRELATION-BASED PCA rather than
COVARIANCE-BASED PCA. Essential if variables have different scales (units) or
widely differing ranges. Not the case here {after transform at Teast) so less
necessary (but was done in Fig. 4.1}).

PCA STRENGTHS

1) CONCEPTUALLY SIMPLE.

2) COMPUTATIONALLY STRAIGHTFORWARD, provided the number of species is
reduced (usually drastically), and it can then cope with an unlimited
number of samples.

3) ORDINATION AXES potentially have some meaning, as simple LINEAR
COMBINATIONS of the species {though these are rarely readily
interpretable in practice).

PCA WEAKNESSES

1) LITTLE FLEXIBILITY in defining relations between samples - in effect
"dissimilarities” are simple Euclidean distances in the species
space. The only flexibility comes from transformation of the species
axes.

2) Does NOT do a very good Job of PRESERVING these DISTANCES
{dissimilarities) in the 2-d ordination - samples that are far apart
in the full space can end up coincident on the 2-d "best fit" plane,
e.g. projected onto it "from opposite sides”.

Example: Nematodes from Solbergstrand mesocosm experiment, GEEP
Workshop (Warwick et al., 1988).



Fig. 4.2
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Mesocosm nematodes. Correlation-based PCA of 16 samples: 4
replicate boxes from each of 4 treatments. (C=control, L=low,
M=medium and H=high levels of diesel oil and Cu, water dosed for
11 weeks). 26 species retained (usual >3% dominance criterion) -
Tog(1l+count) transform applied. PC1 accounts for 23% of
variability, PC2 15%

Strong suggestion of H replicates separating out but note low % of

variability explained, so ORDINATION UNRELIABLE. (MDS gives more realistic
picture - see Fig. 5.5).
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LECTURE 5

MULTIVARIATE METHODS: ORDINATION OF SAMPLES BY
MULTI-DIMENSIONAL SCALING (MDS)

OTHER ORDINATION METHODS

PRINCIPAL CO-ODRINATES ANALYSIS (PCoA; Gower, 1966; Everitt, 1978}):
Also referred to as "CLASSICAL SCALING". Overcomes inflexibility of PCA by
allowing WIDER RANGE of DISSIMILARITY definitions; essentially converts these
to distance and does a PCA (so still subject to same PCA weakness of poor
distance preservation). PCA thus a special case of PCoA, with dissimilarity
= Euclidean distance.

DETRENDED CORRESPONDENCE ANALYSIS (DECORANA; Hi1l and Gauch, 1980):
Relaxes another constraint of PCA, that of linear combinations of species.
Allows CURVILINEAR COMPONENT AXES and can have effect of straightening out
"horseshoe" ordinations. But:

MDS offers arguably the GREATEST FLEXIBILITY, in the sense of (lack
of) assumptions made about the data.

NON-METRIC MULTIDIMENSIONAL SCALING (MDS, e.g. Kruskal and Wish, 1978)

STARTING POINT is the (DIS)SIMILARITY MATRIX between samples {i.e. the
relevant sample relationships). In fact, the ordination depends only on the
RANKS of similarities in the triangular matrix, so is conceptually simple:

MDS attempts to construct a SAMPLE "MAP" (in a given number of
dimensions, e.g. 2-d) using information of the form "Sample 1 is closer to
Sample 4 (in species composition) than it is to Samples 2 or 3".
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Example: Loch Linnhe macrofauna - subset (/¥ counts)

Year: 64 68 71 73
Sample: 1 2 3 4 Similarities
Species
Echin. 1.7 0 0 0 |
Myrio. 2.1 0 0 1.3 ‘
tabid. 1.7 2.5 0 1.8 v
Amaea. O 1.9 3.5 1.7 Sample 1 2 3 4
Capit. O 3.4 4.3 1.2 1 -
Mytil. O 0 0 0 2 25.8 -
3 6.0 67.9 -
4 52,2 68.1 42.0 -

v
MDS Sample 1 2 3 4
3 plot 1 -
T2 2 5 -
1 4 {——— 3 6 2 -
4 3 1 1 -
NOTE:
1) MDS plot can be arbitrarily SCALED, LOCATED, ROTATED or INVERTED; it
gives positions of samples relative to each other.
2) Not difficult here to place 4 points in 2-d with interpoint distances

preserving the rank order dissimilarities exactly. Usually not
possible and there will be some distortion or STRESS between {ranked)
dissimilarities and corresponding distances in the plot (even in a
higher-dimensional ordination).
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Example: R. Exe nematodes (Field et al., 1982)
15
18
17
18
19
ik
12 13
19
S
11
8
1 7
2 8
3; 9

Fig. 5.1 Exe nematodes. 2-d MDS ordination of 19 sites, from bray-Curtis
similarities on ¥V transformed abundances (182 species)

MDS_ALGORITHM - an iterative process

1) SPECIFY NUMBER OF DIMENSIONS for MDS plot (= m).

2) CONSTRUCT STARTING "MAP" of n samples; this could be result of (say)
a PCA ordination or simply a randem set of points {(in m-dimensions}.

3) REGRESS INTERPOINT DISTANCES {djk} from this map on the corresponding
dissimilarities {6jk}. Can be
a) LINEAR {or CURVILINEAR) regression - METRIC MDS; or, more usually
b) MONQOTONIC (increasing) regression - NON-METRIC MDS (Fig. 5.2).
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Fig. 5.2
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Exe nematodes.

% Dissimilarity

"Shepard diagram" of distance (d) in MDS plot

(Fig. 5.1) against dissimilarity (8) in Bray-Curtis matrix.
o = actual distance (d.},
(* = 22 coincident po1nf
= fitted monotonic regress1on {d o
Stress (= 0.053) is a measure of scatter about the regression

Tine




4)

5)

6)

NOTE:

b)
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MEASURE GOODNESS-OF-FIT of the regression by:
STRESS = %%, (d;, - 4,07 / 3,3, d, (5.1)

where 8.k = distance given by the fitted regression line for
dissimilarity Bjk.

Stress = 0 1if the distances preserve the rank order of the
dissimilarities {§}.

Stress is large if the current map is poorly related to the
dissimilarities {(§}.

PERTURB CURRENT SAMPLE POSITIONS on the map, in direction decreasing
the stress, using a STEEPEST DESCENT algorithm.

REPEAT STEPS 3 TO 5 (regress d on &, measure stress, perturb points)
until no further reduction in stress is possible.

The algorithm is an ITERATIVE PROCEDURE so could converge to a LOCAL
MINIMUM rather than a global minimum of the stress function.

Also possible to get DEGENERATE SOLUTIONS where most samples collapse
to the same point, or to the vertices of a triangle, or are strung
out round a circle.

REPEAT FOR DIFFERENT RANDOM STARTING CONFIGURATIONS to confirm that
gives same solution {with lowest stress value) several times - this
is then very likely the GLOBAL MINIMUM (though not guaranteed).

Unlike PCA, a 2-d MDS plot is NOT A PROJECTION of the 3-d plot.
Sti11 useful to do the 3-d MDS and use first 2 axes as the start for
2-d MDS - also useful to compare 2-d and 3-d stress values.

ADEQUACY OF MDS REPRESENTATION

1)

STRESS VALUE: This increases with increasing number of samples and
decreasing dimension of the plot, but roughly speaking, in 2-d:

STRESS < 0.05 implies excellent representation,
< 0.1 good,
< 0.2 still useful, but
> 0.3 Tittle better than random points.



2)

3)

4)

(An alternative formula with a different denominator, "STRESS2", is
nreferred by some, but it increases the Tikelihood of finding Tocal
minima and is not recommended for routine use).

SHEPARD DIAGRAM: Scatter in this is measured by the stress value
{Tow in Fig. 5.2, stress = 0.053, implying good MDS representation).
Diagram also aids detection of “OUTLYING" POINTS and ERRORS 1in
individual dissimilarities.

CONNECTION OF SIMILAR SAMPLES: Distortion in an MDS plot seen by
connecting points whose similarities are in the top 10% or 20% (say)
of values in the similarity matrix.

MINIMUM SPANNING TREE {MST): A similar idea - all points in the MDS
plot are joined by a SINGLE CONNECTED LINE (which branches but is not
allowed to form a closed loop) such that the sum of dissimilarities
along this line is minimised; distortion is indicated by connectiions
which look out of keeping with the distances in the plot (see Gower
and Ross, 1969, for MST algorithm).

SUPERIMPOSITION OF GROUPS FROM CLUSTER ANALYSIS: The combination of
clustering and ordination can be very effective.

Example: Exe nematodes, 19 sites (182 species)

e ;
‘B _J 1
2 ;
3 + :
1 d
3
4 H 1 ]
d 1 |‘
] j 15%
i
tCQ 50 Q
% SIMILARITY
Fig. 5.3 Exe nematodes. Dendrogram (group average 1inking, Bray-Curtis

similarities on vV - abundance). 4 groups of sites separated by
15% similarity cut-off; 8 groups by a 30% (to 45%) threshold
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Fig. 5.4 Exe nematodes. MDS (as Fig. 5.1) with clusters indicated at: ---
15%, —— 30% similarity

Agreement clearly excellent (because clusters are sharp and MDS stress

low). More revealing example provided by the data of Fig. 4.2:
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Example: Mesocosm nematodes, GEEP Workshop.
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Fig. 5.5 Mesocosm: 4 replicates from 4 treatments (reduced species and log
transform, as Fig. 4.2).
a), ¢) Group-average clustering from Bray-Curtis similarities;
clusters formed at 3 (arbitrary) levels superimposed on the MDS
obtained from the same similarities (stress = 0.19).
b), d) Group average clustering from "Euclidean distance”
(dis)similarities superimposed on the PCA (Fig. 4.2). (Euclidean
distance is the dissimilarity measure implicit 1in a PCA
ordination)
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NOTE:

1) Though no natural groupings are apparent from the MDS, the Bray-
Curtis cluster and MDS analyses (a and c¢) are not really
inconsistent.

2) The PCA and its corresponding cluster analysis (d and b) are in

disagreement, indicating that the 2-d PC axis is a distorted
representation of the true "distances" between samples.

ORDINATION v CLUSTERING: Strength of ordination is in displiaying

GRADATION (rather than categorisation) of community composition in a set of
samples.

Example: Celtic Sea zooplankton (Collins, pers. comm.)

Fig. 5.6 MDS of zooplankton samples at a single site (22/9/78), from 14
depths (5 m to 70 m, denoted A,B,..,N) for night (circles) and
day-time hauls



MDS_STRENGTHS:

1)
2)

3)

4)

SIMPLE in concept.

BASED ON RELEVANT INFORMATION. It can be used with the most
appropriate measure of {dis)similarity for the particuiar data.

SPECIES DELETIONS UNNECESSARY for an ordination of samples {any
exclusion dividing line is inevitably arbitrary}. The similarity
measure can automatically weight rarer species appropriately (and can
be chosen to ignore joint absences).

GENERALLY APPLICABLE. Since MDS uses only vrank order of
dissimilarities it makes the weakest possible assumptions about
quality of the data.

SIMILARITIES CAN BE GIVEN UNEQUAL WEIGHT in constructing the MDS plot
(e.qg. some samples may be more reliable, perhaps because they are
based on combining more replicates).

MDS WEAKNESSES:

1)

2)

3)

COMPUTATIONALLY DEMANDING; much more than n = 100 %9mp1es is
prohibitive (fewer on a PC; CPU time is proportional to n®).

CONVERGENGE to the correct solution (the global minimum of stress) is
NOT GUARANTEED, since MDS is an iterative procedure; the necessary
repeats add to the computational burden.

ALGORITHM PLACES MOST WEIGHT ON LARGE DISTANCES. For detailed
structure within large clusters it is sometimes necessary to ordinate

clusters separately (same constraint applies to most methods, eg.
PCA).

RECOMMENDATIONS:

1)

3)

MDS RECOMMENDED as one of the best (perhaps the best) ordination
technique {e.g. Everitt, 1978; Kenkel and Orloci, 1986). Preferable
to PCA because of its flexibility and (lack of) assumptions.

When sample relationships are simple (e.g. a few strong clusters; one
strong gradient) most ordination methods will perform adequately.
MDS scores because of its greater ability to REPRESENT MORE COMPLEX
RELATIONS in 2-d space.

If stress is low (say, <0.1), an MDS ordination is probably a more
useful representation than a cluster analysis, even when the samples
are strongly grouped. However, the techniques complement each other,
so PERFORM BOTH, AND VIEW THEM IN COMBINATION, especially for higher
stress. (In the latter case also try a higher-dimensional
ordination).
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LECTURE 6
MULTIVARIATE METHODS: TESTING FOR DIFFERENCES BETWEEN
GROUPS OF SAMPLES

DISTINGUISHING SITES (or TIMES) by formal significance tests is a
necessary first step to INTERPRETING differences (e.g. control v. impacted
site) but wusually overlooked for multivariate methods (because of
unavailability of suitable tests).

(Note: Cluster analysis will always find clusters, even from random
data points!)

UNIVARIATE TESTS

Ja =1

FIELD SITE

Fig. 6.1 Frierfjord macrofauna. Means and 95% confidence intervals for
Shannon diversity (H') at 6 field sites

ONE-WAY ANOVA provides a test of the (null) hypothesis:

H,: No difference between sites
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It assumes normality of H’ and constant variance across sites (hence

the confidence intervals in Fig. 6.1 use a pooled variance estimate and are
of the same widths).

Table 6.1

Frierfjord macrofauna diversity H’; ANGOVA.

Sum of Deg. of Mean F Sig.
squares freedom Square ratio lTevel
Treatments 3.938 5 0.788 15.1 <0.1%
Residual 0.937 18 0.052
Total 4.874 23

MULTIPLE COMPARISON TESTS are used to follow up a significant F-test

with comparison between (all) pairs of sites, e.g. =~

TUKEY T TEST (i.e. a Least Significant Difference test) shows that the

"reference” site A has significantly higher diversity than the rest, and C has
a Tower H’ than E and G.

NOTE:
1)

3)

Multiple comparison tests FIX the PROBABILITY of TYPE I ERROR
("reject the null hypothesis when true") at 0.05 (say) over all
pairwise comparisons.

Global F-test 1is best thought of as a "red light" - unless
significant it BARS PROGRESS TO PAIRWISE COMPARISONS and
interpretation of differences.

There are several implications for SAMPLE COLLECTION, which apply
equally to the multivariate testing which follows:

IMPLICATIONS FOR DESIGN

1)

2)

3)

CONTROL (reference) site(s) essential - impact only established by
reference to similar unimpacted site(s), or to same site pre-impact.
(Preferable to have both spatial and temporal controls).

REPLICATION at each site essential - should be over appropriate
spatial scale {i.e. genuinely representative of that location).

"BLIND" ANALYSIS desirable - avoids (unconscious) biases, e.g.
tendency to uniformity of replicates.



MULTIVARIATE TESTS

INFORMAL:
divided into sites.
GROUPING.

113 -

CLUSTER, MDS, etc. assume no Knowledge of how samples are
So, plots can be inspected for evidence of REPLICATE

Fig. 6.2 Frierfjord macrofauna.

MDS plot (Bray-Curtis similarities, ¢V

transform), for 24 samples, 4 replicates from each of sites A-E,G
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Fig. 6.3 Frierfjord macrofauna. Dendrogram for 24 samples {similarities
as for Fig. 6.2)

PARAMETRIC TESTS

EXACT ANALOGUE OF ONE-WAY ANOVA is multivariate analysis of variance
(MANOVA), the F-test being replaced by WILKS' A test (e.g. Mardia, 1979).
Pairwise differences can be tested by MAHALANOBIS’ DISTANCES (e.g. Seber,
1984); but

ASSUMPTIONS RARELY SATISFIED: Tests require multivariate normality of
abundances and "large samples" {at each site). For Frierfjord macrofauna,
even after reduction to 30 species:

a) 50% of abundances are zero - normality impossible (even with
transform),

b) ratio of observations to parameters needing estimation is 1.1 -
hardly Tlarge!
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RANDOMISATION/PERMUTATION TESTS:

Fig. 6.4

Frierfjord macrofauna. MDS plot (Bray-Curtis, ¢V transform) of 4
replicates from B,C,D

NULL HYPOTHESIS H,: no difference between sites. If H, false,

distances between rep11cates within sites are less than distances across

sites.

1)

3)

So:

COMPUTE STATISTIC reflecting this difference. To derive its sampliing
distribution, note that when H, true, the 12 labels (4 B’s, 4 C’s,
4 D’'s) could be allocated at random to the 12 MDS points. So:

RECOMPUTE STATISTIC under ALL POSSIBLE PERMUTATIONS of the 12 labels
between the 12 MDS points, or (since that is prohibitive} under a
LARGE NUMBER OF RANDOM ALLOCATIONS of the 12 labels to the points.

RANDOMISATION/PERMUTATION TEST will reject H AT 5% SIGNIFICANCE LEVEL
if observed statistic greater than its value for 95% of the random
relabellings.
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FORM OF DISPLAY SHOULD BE IRRELEVANT: Desirable that the statistic has
exactly the same value whether the representation is:

a) a dendrogram (Fig. 6.3)

b) an MDS for all 6 sites (Fig. 6.2) or just a subset of sites (Fig.
5.4)

c) an MDS in 3-d, say, rather than 2-d.

Bearing in mind that MDS is a function only of rank {dis)similarities,
this suggests:

STATISTIC based on DIFFERENCE IN AVERAGE RANK DISSIMILARITIES between
and within sites, i.e.

R = (Fsetween - F\mli'chia'a)/(M/Z) (6.1)

where M = n(n-1)/2 (n = total number of samples) and:

R = 1 if all replicates within sites are more similar than any
replicates between sites.

R = 0 represents the null hypothesis.

(R < 0 possible, but only significantly so if experimental design

incorrectly specified).

PAIRWISE COMPARISONS OF SITES: If global test rejects H, then same
type of test can be carried out on each pair of sites, though note:

a) These tests must be treated with some caution since NOT true
"MULTIPLE COMPARISON" TESTS; overall Type I error not controlled.

b) Minimum of 4 replicates per site needed for pairwise tests. Can
be fewer for global test since NUMBER OF DISTINCT PERMUTATIONS
is:

(Z;n)!1/(n;Inteoon tkt)  (6.2)
where {n.} replicates at site il (=l 2 M) =

Example: 2 replicates at each of 2 sites (A,B)

A B B
Sample 1 2 3 4 2
Al - 1
A2 2 - 3
B 3 4 3 - > 4
B 4 6 5 1 -

Rank dissimilarities MDS (1,2 = A; 3,4 = B)
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FBetween = 4‘5’ 1T"..;it]-1i,-, =1.5, M= 5, so R=1.

Only three possible distinct PERMUTATIONS OF LABELS:

A B B
A A A
B A B
B B A
A A B B A A B B A A B B
Smp. 1 2 3 4 Smpl..” 1+ 3V 229 SMpere Loi2de 207 3
Al Al - Al -
A2, 2. .- A3 4 - Ad 6 -
B*3 3" 34p - Bléan 2 3e3 (m= Bl & o2k Bl
B4 6 5|1 - B4 6 1|5 - B3 4 1(3 -
R=1 R=-0.5 R=-0.5

Observed case (R = 1) has 33% probability of occurring by chance, so
could not reject the hypothesis of "no difference between sites” (even though
the observed case is the most extreme possible, here)

A more realistic example, where there are 12 samples divided between
3 sites (and thus 12!/(4!414131) = 5775 possible permutations) is given by

Fig. 6.4:
Example: Frierfjord macrofauna abundances.
Table 6.2
Frierfjord macrofauna. Ranked dissimilarity matrix
(Bray-Curtis, ¥V transform) between the 12 replicates
from sites B,C,D.
B1 B2 B3 B4 (I cz €3 ¢4 D1 D2 D3 D4
B1 -
B2 33 -
B3 8 7 -
B4 22 11 19 -

62
36
60
31

21
43
25



- 118 -

GLOBAL TEST:

F = 37.54, F... = 22.72, M = 66, so R = 0.45.

Between

In 500 random relabellings, none of them gave R>0.45, so H, rejected
at significance Tevel p<.002 (0.2%).

PAIRWISE TESTS:

For each pair of sites, the corresponding subset of the above
triangular matrix is extracted, re-ranked and R computed as above, e.g. for
B v C, R = 0.23. This time, R can be re-evaluated for all possible
relabellings, giving p<12%, so B & C not significantly different (only 35
distinct permutations, so the maximum attainable significance level is 3%) .

However, D does differ from B and C (B v D: R = 0.54, p<3%, C v D:
R = 0.57, p<3%).

FURTHER FEATURES AND EXTENSIONS:

1) PERMUTATION TEST CONCEPT dates to Mantel (1967) and general Monte
Carlo (randomisation) tests discussed by Hope (1968). Practicals use
a FORTRAN program called ANOSIM (Analysis of Similarities).

2) ANOSIM test makes NO ASSUMPTION OF "EQUAL VARIANCE"

Example: Coral communities at South Tikus, Thousand Is., Indonesia
(Warwick, Clarke & Suharsono, 1990}.
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MDS for % cover of coral species (Bray-Curtis, no transform) for
10 replicates in each of 5 years: 1 1981 (pre-E1 Nifio), 3
1983 etc

ANOSIM test distinguishes the clear difference in initial and impacted
ns (1 and 3), though change 1is largely in variance rather than

ANOSIM TEST NOT RESTRICTED TO BALANCED REPLICATION at sites (or
times); some sites can even have only one replicate provided enough
replicates overall to generate sufficient permutations (eqt. (6.2)).

WIDE APPLICABILITY in that ANOSIM <can be wused with any
(dis)similarity matrix; e.g. for a Euclidean distance matrix
(appropriate to a PCA) ANOSIM can be seen as a non-parametric
alternative to the parametric Wilks’ A test for a MANOVA, though it:



5)

6)
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LACKS SENSITIVITY (as with many non-parametric tests) in the
(unlikely) event that the data is genuinely multivariate normal.

ANOSIM PROGRAM EXTENDS TO ANALOGUE OF 2-WAY ANOVA:

2-WAY NESTED MODEL:
Example is Oslo Workshop macrofauna data from the mesocosm
experiment: 2 cores from each of 4 boxes from each of 4 treatments.

TEST OF "BOX EFFECTS" involves calculating, separately for each
treatment, the l-way ANOSIM statistic for box differences, and then
averaging across treatments. The sampling distribution comes from a
restricted randomisation, with permutations preserving treatment
designations.

The rank dissimilarity matrix is then reformed for a TEST OF
TREATMENT EFFECTS by l-way ANOSIM.

2-WAY CROSSED MODEL:

Example here would be several sites examined at several times. Can
test for any overall differences between times (allowing for site
differences by restricting permutations within sites). Alternatively
test for overall differences between sites (allowing for differences
in times).

RECOMMENDATIONS

1)

2)

USE RANDOMISATION/PERMUTATION TEST (ANOSIM) rather than parametric
methods for testing of multivariate differences between previously-
defined groups of samples (i.e. sites, times, treatments etc.); its
ROBUSTNESS (lack of assumptions) more than makes up for its
CONSERVATISM - latter is not so bad anyway. (Note: cannot test if
differences between groups of samples are ’‘significant’, if the
grouping came from multivariate analysis of that same data).

USE NORMALITY-BASED TESTS for univariate INDICES, after any necessary
transform (see lecture 9).
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LECTURE 7
MULTIVARIATE METHODS: SPECIES ANALYSES

SPECIES CLUSTERING

Clustering methods can be applied to SPECIES SIMILARITY matrices
(1atter defined on pages 85-86).

Example: R. Exe (UK) nematodes, Field et al. (1982)

# m = 2 s = w = w3

2L1a;1A 3

]00 SRFASZITIIIIINNGG
-

% SIMILARITY
n
o
e

8%

..........................................................

A

%
1

Fig. 7.1 Exe nematodes. Dendrogram {group average 1link}) from Bray-Curtis
similarities (standardised abundance data) for 55 species from 19
sites - reduced from 182 species by including those with counts
>4% of total at any one site. The 4 to 5 groups indicated
correspond closely with sharply defined clusters in the sites
anatysis (Fig. 5.3)
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SPECIES MDS

A species similarity matrix can aiso be input to an MDS, in the same
way as for samples. In practice, often gives high 2-d stress. As with
clustering, works best when samples form strong groups, arising from species
sets which tend to be exclusive.

Fig. 7.2 fxe nematodes. MDS of 55 commonest species using Bray-Curtis
similarities on standardised abundances. Main groups from cluster
analysis (Fig. 7.1) indicated; they correspond closely to
groupings of sites (Fig. 5.4)

Note: The LESS-COMMON SPECIES will generate erratic similarities,
giving isolated MDS points and an unhelpful plot - they need to be REMOVED
initially.

However, SPECIES clustering or ordination is generally Tless
informative than methods which HIGHLIGHT SPECIES contributing to pattern of
SAMPLE clustering or ordination:

DETERMINING DISCRIMINATING SPECIES
Given clear CLUSTERING of SAMPLES, what methods will determine SPECIES

RESPONSIBLE for groupings? Hard to see patterns in the original data matrix,
SO:
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RE-ORDER COLUMNS (samples) and ROWS (species) to match groupings from
site and species clustering and MDS. CATEGORISE counts/biomass and represent
by symbols of increasing size & density, to give SHADE MATRIX.

Example: Bristol Channel zooplankion, April 1978.

Sp. Group I Group 2 Group 3 Group 4

17 ceiiiasanans —— . . . .

15 se s s « e 0 e

1l es0000Q0+COCOCTOOESOER000000 «

21 v B: BN EEE P . s v e 2

10 - S| 3F W) ¥ 5 G e e ® G . . voraes s s v ohel 95 mE N
20 . e s+ 49 ceEsEedsEEe o v aRe@ - ee s 2w .
4 EERYecooeellesllooe="T100 00 s PR IeL) o0
23 A s e a0 000] 0COCOOSSODDECIL0 o000 O O
24 . o = o s
2
19
18 OIS
3 e-0 . sar Qoo COoQOIDRs o000 0C0 o TR OEOSSEE
13 vose LELEL LR Ie s oo ol L Melie 00000050 = -
11 . 0= elle6 80088 O]
12 3 . >k
5 o
15 o

Group 1: 1,2,4,5,3,6,7,8,10,12

Group 2: 9,24,13,19,27,17,11,20,15,16,14,21,18,25,29,22,26,23
Group 3: 42,34,48,49,50,53,44,43,33,35,54,55,47,31

Group 4: 51,41,45,37,32,36,38,57,56,58,28,39,40,46,52

Fig. 7.3 SHADE matrix for 24 species X 57 sites. Site groups determined
by clustering of Fig. 3.3; symbols denote increasing (/i -
transformed) counts

Alternative is to BREAK DOWN average DISSIMILARITY (&) between two
groups of samples into CONTRIBUTIONS from each SPECIES - revealing GOOD
DISCRIMINATORS.



From (2.11), contribution to &;, from ith species is:

8, (1) =200 |y - vl / 2, (Vi ¥ Vi) (7.1)

61(1) then averaged over all pairs (with j in 1st and k in 2nd group), to
give AVERAGE CONTRIBUTION 5 from ith species (& its standard deviation SD
(8:)).

_ DISCRIMINATING SPECIES are those with HIGH 3} and HIGH ratio
3./SD(8;) (this implies CONSISTENCY of contributions across all jk pairs).

Table 7.1

Bristol Channel zooplankton (/4 _counts). Species contributions 3}
to total average dissimilarity (3 = 25 = 59.5) between site qroups

182; 2% % is cumulative % contr1but1on to 8. * denotes good
discriminators of groups 1 & 2.

Sp. Name 3. SD{3;) §&./SD(8.) I8, %
6 Eurytemora affinis 17 2.8 Rel= 13.0
4 Centropages hamatus 7.3 4.4 1.7*% 25.2
3 Calanus helgolandicus 6.8 4.0 Aol 36.7
1 Acartia bifilosa 5.7 4.0 1.4% 46.3

23  Temora longicornis 5.6 2.2 1.7* 55.6

18  Pseudocalanus elongatus 4.7 1.5 3.1*% 63.5

13 Paracalanus parvus 3.3 4.2 0.8 69.1

15  Pleurobrachia pileus jv 3.1 2.8 1.1 74.3

20 Sagitta elegans jv 2.9 1.9 1.6% 79.1

19  Sagitta elegans jv e 16 1%3 82.5
8 Gastrosaccus spinifer 2.0 1.8 1.1 85.9

14  Pleurobrachia pileus 1.9 1.6 1.2 89.0

10  Mesopodopsis slabberi ) 1.4 1.3 91.9

21  Schistomysis spiritus 1.6 1.4 1.1 94.5

17  Polychaete larvae 1.5 1.3 1.2 97.1
2 Acartia clausi 0.7 1.8 0.4 98.3

Can similarly compute the contribution of the ith species (.§ ) to the
AVERAGE SIMILARITY WITHIN A GROUP (S), using the 2nd form of (2. 1) This
highlights species consistently prominent in that group (i.e. HIGH 31, HIGH
ratio S}/SD(SJ)
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Table 7.2

Zooplankton. Species contribution (§}) to average
similarity (S = 66.3) within site group 1.

Sp. Name S, SD(S;) s./SD(S;) ES; %

& Eurytemora affinis 19.3 6.3 N 29.1
18 Pseudocalanus elongatus 14.7 2.7 5.4* 51.3

1 Acartia bifilesa 12.2 6.4 1.9% 69.6
17  Polychaete larvae 3.9 £ 1.2 71555
14  Pleurobrachia pileus 3.4 3.8 0.9 80.7
21 Schistomysis spiritus 3.3 3.6 0.9 85.7
15 Pleurobrachia pileus jv 3.3 4.7 0.7 90.7

RECOMMENDATION

USE SIMILARITY % BREAKDOWN {program SIMPER) or a SHADE MATRIX to
INDICATE (not test) which species are mainly responsible for an observed
clustering of the samples into groups (or for a confirmed difference between
previously-defined groups).
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LECTURE 8

UNIVARIATE AND DISTRIBUTIONAL METHODS: DIVERSITY MEASURES,
DOMINANCE CURVES AND OTHER GRAPHICAL ANALYSES

INDICES OF DIVERSITY AND EVENNESS

A single index of species {or higher taxon) diversity is commonly
employed in community studies, and is amenable to simpie statistical analysis.
A bewildering variety of diversity indices has been used, and it is not
appropriate here to discuss their relative merits and disadvantages. A good
account can be found in Heip et al. (1988).

Two different aspects contribute to the concept of community diversity:

SPECIES RICHNESS - A measure related to the total number of species
present.

EQUITABILITY - Expresses how evenly the individuals are distributed
among different species.

The most commonly used diversity measure is the SHANNON-WIENER INDEX:
H = - Z; p;(Tog p;)

This incorporates both the species richness and equitability
components. Note that logarithms to the base 2 are often used in the
calculation, giving the diversity units as ’bits per individual’. Log, is
a130 frequently used, so care should be exercised when comparing published
indices.

SPECIES RICHNESS is often given simply as the total number of species
(S), which is obviously very dependent on sample size, but more commonly as
MARGALEF’S INDEX d, which also incorporates the total number of individuals
{N):
d = (5-1) / log N
EQUITABILITY is most commonly expressed as PIELOU’S EVENNESS INDEX:
J’ = H'(observed) / H'

where H’ . is the maximum possible diversity (Tog S).

¥

UNITS OF MEASUREMENT

Numbers of individuals belonging to each species are the most common
units. For internal comparative purposes other units could be used, e.g.
biomass or total cover of each species along a transect (e.g. for hard-bottom
epifauna).



REPRESENTING COMMUNITIES
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Data usually presented as plots of means and confidence intervais for

each site or time.

Example 1:

Benthos from Hamilton Harbour, Bermuda.

MACROF ALNA MEMATOOES
28 zahk
- 4
[ I 26 f—- 1»
2k f J_
- ¢4~
= I . i
E 18 L
g »
-
a jli 2 -
l -
Le~-
- i
o 5 C L 1 1 i Il L ‘ E "- A L = 'l L L L
H3 Hl H4 M7 H2 =G H3 M3 H4 H? H2 S
Fig. 8.1 Diversity (H’) and 95% confidence intervals for macrobenthos
(left) and meicobenthic nematodes (right) at six stations
Example 2: Reef-corals from South Tikus Island, Indonesia.
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Fig. 8.2 Total number of species (S}, Diversity (H') and Evenness (J')

based on coral species cover data along transects, spanning the
1982-3 E1 Nifio. Note dramatic decline and partial recovery of §
and H’, but no obvious changes in J’
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DISCRIMINATING SITES OR TIMES

The significance of differences in diversity indices between sampling
sites or times can be tested by one-way analysis of variance (ANOVA).

DETERMINING STRESS LEVELS

Increasing levels of environmental stress are generally considered to:

Comparisons

DECREASE diversity (€.g. H')
DECREASE species richness (e.g. d)
DECREASE evenness {e.g. J’), i.e. INCREASE dominance

of measured indices can be made:

with reference to comparative stations along a spatial
contamination gradient (e.g. Fig. 8.1}.

with reference to comparative historical data (e.g. Fig. 8.2).

with reference to some theoretical expectation of diversity,
given the number of individuals and species present. Comparisons
of observed diversity have been compared with predictions from
CASWELL’S NEUTRAL MODEL (Caswell, 1976), which assumes certain
community assembly rules and no interactions between species. A
value of zero for the V statistic indicates neutrality, positive
values indicate greater diversity than predicted and negative
values lower diversity. Values >+2 or <-2 indicate significant
departures from neutrality. The computer program of Goldman &
Lambshead (1989) is useful.

Example: V statistics for summed replicates of macrobenthos and
meiobenthic nematode samples at six stations in Hamilton Harbour, Bermuda (cf.

Fig. 8.1)

STATION MACROBENTHOS NEMATODES
Hé i -0.4
H2 +0.5 -0.1
H7 -0.2 -0.4
H4 -4.5 -0.5
H3 -5.4 +0.4
H5 =1 J9 0.0

Note diversity of macrobenthos at H4 and H3 is significantly below
neutral model predictions, but nematodes are close to neutrality at all

stations.
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GRAPHICAL DISTRIBUTION PLOTS

The purpose of graphical/distributional representations is to extract
information on patterns of relative species abundances without reducing that
information to a single summary statistic, such as a diversity index. This
class of techniques can be thought of as intermediate between univariate
summaries and full multivariate analyses. Unlike multivariate methods, these
distributions may extract universal features of community structure which are
not a function of the specific taxa present, and may therefore be related to
levels of biological stress.

RAREFACTION CURVES

Rarefaction curves (Sanders, 1968) were among the earliest to be used
in marine studies. They are plots of the number of individuals on the x-axis
against the number of species on the y-axis. The more diverse the community
is, the steeper and more elevated is the rarefaction curve.

Example: Polychaete/bivalve fraction of macrobenthos.

s . pmmemmmTTTIIIIIEITT Friday Harbor
Q L /(Sanden. 1969)
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Number of individuals

Fig. 8.3 Rarefaction curves comparing North Sea and Friday Harbor stations
(from Buchanan & Warwick, 1974)
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RANKED SPECIES ABUNDANCE (DOMINANCE)} CURVES

These are based on the ranking of species (or higher taxa) in
decreasing order of their importance in terms of abundance or biomass. The
ranked abundances, expressed as a percentage of the totai abundance of all
species, are plotted against the relevant species rank. Log transformations
of one or both axes have frequently been used to emphasise or downweight
different sections of the curves.
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Fig. 8.4 The same (hypothetical) species abundance data plotted as ranked
species abundance curves with none, one or both axes on a log
scale (from Heip et al., 1988)
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k-DOMINANCE AND LORENZ CURVES

As an alternative to the simple dominance curves above, cumulative
ranked abundances may be plotted against species rank, or log species rank,
to produce k-DOMINANCE CURVES (Lambshead et al., 1983). This has a smoothing
effect on the curves. Ordering of curves on a plot will obviously be the
reverse of rarefaction curves, with the most elevated curve having the lowest
diversity. To compare dominance separately from the number of species, the
x-axis (species rank) can be rescaled from 0-100 (relative species rank), to
produce LORENZ CURVES.

Example: Nematodes from Loch Ewe, Scotland.
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Fig. 8.5 k-dominance curves (left) and Lorenz curves (right) for 20 cm
deep cores taken from experimental sand columns 20 days (A) and
77 days (B) after initial setup, and from intertidal (F) and
subtidal (S) sand from the study site (from Lambshead et al.,
1983}

ABUNDANCE / BIOMASS COMPARISON (ABC) PLOTS

The advantage of distribution plots such as k-dominance curves is that
the distribution of species abundances among individuals and the distribution
of species biomasses among individuals can be compared on the same terms.
Since the two have different units of measurement, this is not possible with
diversity indices.



This is the basis of the ABUNDANCE / BIOMASS COMPARISON (ABC) method
of determining levels of disturbance (pollution-induced or otherwise) on
benthic macrofauna communities. Both empirical evidence and theoretical
considerations suggest that the k-dominance curve for biomass will fall above
the curve for abundance in undisturbed (or unpolluted) communities, and vice
versa for disturbed (or polluted) communities.
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Fig. 8.6 Hypothetical k-dominance curves for species biomass and numbers,

showing unpolluted, moderately polluted and grossly polluted
conditions (from Warwick, 1986)

Example 1: Time series of macrcbenthos in Loch Linnhe, Scotland in

response to increasing and decreasing levels of organic enrichment (pulp-mill
effluent). See Lecture 1, Figs. 1.3 and 1.4

Example 2: Transect across sewage-sludge dumping ground at Garroch
Head, Firth of Clyde, Scotland.
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Fig. 8.7 Map showing Tlocation of dumping-ground. Centre of dump-site
denoted by dashed circle: positions of sampling stations (Pl -
P12) identified by asterisks
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Ps8.5

P8 P7

T i 5 10

SPECIES RANK

ABC plots for macrobenthos on Garroch Head transect in 1983.
Abundance = squares, biomass = crosses (Frem Warwick et al.,
1987)
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TRANSFORMATIONS OF k-DOMINANCE CURVES

PROBLEM: It is difficult to distinguish differences between k-
dominance curves when cumulative frequencies are near 100% (sometimes after
the first 2 or 3 spp.).

SOLUTION: Transform y-axis so that cumulative values are close to
linearity. Clarke (1990) suggests the modified Jogistic transformation:

y;" = Tog[{l + y;)/(101 - y;}]

Example: Macrobenthos from Frierfjord / Langesundfjord, Norway
(IOC/GEEP Oslo Workshop).
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Fig. 8.9 a), b) Standard ABC plots for sites A (reference}) and C
(potentially impacted). c), d) ABC plots for sites A and C with
the y-axis subjected to modified Togistic transformation.
Abundance = continucus line, biomass = dashed line



PARTIAL DOMINANCE CURVES

PROBLEM: Visual information presented by k-dominance (and ABC) curves
is over dependent on single most dominant species. Unpredictable presence of
large numbers of small biomass species, or heavy spatfall of young of one
species, may give false impression of disturbance.

SOLUTION: With genuine disturbance, patterns of ABC curves should be
unaffected by successive removal of most dominant species in tferms of
abundance or biomass. PARTIAL DOMINANCE CURVES (Clarke, 1990) compute the
dominance of the second most dominant species gver the remainder, the same
with the third most dominant etc.

Exampie 1: Macrobenthos from Frierfjord/Langesundfjord, Norway
(IOC/GEEP Oslo Workshop).
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Fig. 8.10 Partial dominance curves (abundance/biomass comparison) for
reference station A {c.f. Figs 8.9a and ¢ for corresponding
standard and transformed ABC plots).  This illustrates the
typically undisturbed condition)



Example 2:

PAATIAL DOMINANCE E
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Fig.
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Loch Linnhe macrobenthos, 1966-68, 1970-72.
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a)-f) ABC curves (logistic transform). g}-1) Partial dominance
curves for abundance {solid line) and biomass (dashed line} for
the same years
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SIGNIFICANCE TESTING FOR GRAPHICAL METHODS

Given replicate curves (k-dominance, ABC, ’individuals amongst
species’ etc.) at 2 or more sites (or times etc.), need a TEST FOR SIGNIFICANT
DIFFERENCE.

Example: Hamilton Harbour macrofauna.

100
S0
80
70
60
50
40
30

CUMULATIVE X ABUNDANCE

20

10

IITTI"Ill!lITIYI'EII'IIIITIII"]IIilllllillllllT[]llIl

SPECIES HANK

Fig. 8.12 Abundance k-dominance curves for four replicates at site H4
{salid) and H6 (dashed 1ine)

Is the apparent difference far H4 and H6, in initial slope of curves,
borne out statistically?

Also, testing for difference between sets of ABC CURVES at two {or
more) sites reduces to a comparison of two (or more) sets of replicate curves
by computing the DIFFERENCE CURVE B-A for each sampie, e.g. Fig. 8.13.
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Fig. 8.13 Difference (B-A) between k-dominance curves for biomass and
abundance for four replicate samples at H2 (solid) and H4 (dashed
line)

FIRST APPROACH:

Reduce each replicate curve to a SINGLE SUMMARY STATISTIC. E.g. if
{A;} and {B,} are the cumulative abundance and biomass values from an ABC plot
(i=1,.., S species), define:

W= Zil (B,-4;) / [50({s-1)]

W takes values in {-1,1), with W~1 for totally even abundances across species
but biomass dominated by a single species, and W--1 for the converse case.
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Similarly, for k-dominance curves of cumulative {A;}:
K, = [(37 A -50(s+1)]/[50(s-1)]

where extremes are K-0 {evenness) and K-1 (dominance). K, defined similarly
for biomass.

Now, PERFORM ANOVA on SUMMARY STATISTICS (W or K) from each replicate
(e.g. as for diversity indices). Works well in cases like Fig. 8.13 (HZ & H4
differ significantly) but poorly for Fig. 8.12 where difference is in slope
not mean area. MNeed more GENERAL TEST with power to detect any CONSISTENT
DIFFERENCE between 2 {or more) sets of curves, so

SECOND APPROACH:

Define ‘dissimilarity’ between any pair of curves {A.; i=1,..,8,},
(A5 i=1,..,S,}, as their total (absolute) distance apart:

d = zsmax lAiz'Aizl

i=1

where S__ = max(S,, S,). Or better reflection of visual difference in two K-
dominance curves 1is:

a’ = ZSW |A;mAg,| log(1+1™)

i=1

Compute d (or d’) for every pair of replicate curves, to give Tower
triangular dissimilarity matrix, and CALCULATE ANGSIM STATISTIC R, eqt. {6.1).

PERMUTATION/RANDOMISATION TEST of difference between sites/times etc.
then carried out exactly as in lecture 6. (ANOSIM on Fig. 8.12 distinguishes
H4 and H6, whereas ANOVA on K, does not).

Details in Clarke (1990). Note that principle EXTENDS TO OTHER
GRAPHICAL METHODS, e.g. partial dominance, ’individuals amongst species’
curves etc.
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LECTURE 9
TRANSFORMATIONS

There are two distinct roles for transformations in community analysis:

a) to validate assumptions for parametric analyses - applies to
UNIVARIATE tests

b) to weight the contributions of common and rare species in a
MULTIVARIATE representation.

UNIVARIATE

Example: Frierfjord macrofauna. Indicator species.

Table 8.1

Thyasira sp. numbers in 4 replicate grabs at 6 sites.

Site: A B C D E G
Replicate
1 1 7 0 1 62 66
2 4 0 0 8 102 68
3 3 3 0 5 93 52
4 11 2 3 13 69 36
Mean 4.8 3.0 0.8 6.8 81.8 55.5
Stand.dev. 4.3 2.9 1.5 5.1 18.7 14.8

The replicates are not symmetrically distributed (they tend to be
right-skewed), so normality assumptions are dubious.

More importantly (for test validity), the variance increases strongly
with the mean - this invalidates "constant variance" assumptions of
ANOVA.

Both problems can be tackled by:
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POWER TRANSFORMATION

Individual replicates y are transformed to y*, given by:

y* = (y*-1)/4 (9.1)
where, in order of INCREASING SEVERITY,

A=1 - no transform

A = 0.5 - square root (V)
i =0.25 - 4th root (VV)

A -0

log transform (y* = Tog.y)

Possible to determine best i, anywhere in (0,1), for each separate
data set (Box and Cox, 1964), but unnecessarily precise - betier just to
choose between above 4 cases, using:

TAYLOR’S POWER LAW:

2
var(y) = (mean y)’ (9.2)

then:
200104y

var(y') « (mean) (approx.) (9.3)

Choose 4 = 1-{v/2) to get var(y) = constant.

Find v by regressing Tog {stand.dev.) on log {mean), because:

log(sd{y)) = (v/2)log{mean y) + constant {(9.4)

So A = 1 - {slope of regression), thus if:

- no transform

- use ¥ {9.5)
use v

- use tog,

slaope

~d LA
(83}
1

— O OO
N
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Example: Thyasira numbers at & sites

Log(sd) X
|
2.5 -]
| Slope = 0.55
2 -]
l
1.5 -|
l
1 -]
i
0.5 -|
| %
0 -
! [ ! 4 ! [ ’ ! !
0 1 2 3 4
Log(mean)

Plot indicates v appropriate. After transform:

Site A B c D £ B
Mean(y*)  2.01 1.45 0.43 2.42 9.00 7.40
sd (y*)° 0.97 1.10 0.87 1.10 1.04 4

VARIANCE STABILISED so ANOVA and follow-up tests VALID {show E,G
different from the rest, clearly). Means and confidence intervals should be

back-transformed to original scales (intervals not symmetric but then data was
not symmetric).

CAUTION: Beware of doing multipie ANOVAs on a range of indicator
species (each runs a 5% risk of error and this compounds). Alright if
performed {(at higher significance) on a few species selected a_priori.

AVOID "SNOOPING" in a large data array for likely species to do an
ANOVA on; certain to find some which are significant, even in a random array!
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MULTIVARIATE

TRANSFORMS can be used for the same reason as in univariate analyses -
to induce {multivariate) normality, eg. for MANOVA tests (lecture 6), but:

a) Insufficient to demonstrate univariate normality and constant
variance (for each variable) to prove multivariate normality and
constant covarijance.

b) Rarely possible to achieve (marginal) normality for species
abundance/biomass data (though possible for, say, a matching set of
diversity indices).

MORE IMPORTANT USE OF TRANSFORMS IN COMMUMITY DATA is in WEIGHTING
rare and common species in forming similarities between sites, eg. Bray-
Curtis:

Eil |¥i; = ¥l }

Sy = 100 {1 - =2 T (9.6)
jm1 Yii T Vik
Example: Loch Linnhe macrofauna, subset
Sample: 1 2 3 4 UNTRANSFORMED
Species
Echinoca. 9 0 0 0 Sample 1 2 3 ¢
Myrioche. 19 0 0 3 | -
Labidopl. g 37 0 10 2 8 -
Amaeana 0 12 144 9 3 0 42 -
Capitella 0 128 344 2 4 39 21 4 -
Hytilus 0 0 0 0
Sample: 1 2 3 4 {/ TRANSFORMED
Species
Echinoca. 1.7 g 0 0 Sample 1 2 3 4
Myrioche. 2.1 0 0 1.3 1 -
Labidopl. 1.7 2.5 0 1.8 2 26 -
Amaeana 0 1.9 3.5 1.7 3 0 68 -
Capitella 0 3.4 4.3 1.2 4 52 88 42 -
Mytilus 0 0 0 0

Untransformed similarities are lower (unimportant in itself since MDS
is only a function of ranks) but RANK SIMILARITIES ARE TOTALLY CHANGED by
transform.
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Untransformed similarities are DOMINATED BY THE COMMONEST SPECIES, eq.
comparing samples 2 and 4 and omitting each species in turn:

Species omitted: None 1 2 3 4 5
Bray-Curtis (S): 21 21 21 14 13 54 21

By contrast, under a Y/ transform, ALL {present) SPECIES MAKE SOME
CONTRIBUTION to the similarity:

Species omitted: None 1 2 3 4 5
Bray-Curtis (S): 68 68 75 61 59 76 68

TRANSFORMATION SEQUENCE:

None —> V —> J{ —> log —> Presence/absence

puts PROGRESSIVELY LESS WEIGHT on common species and increasingly takes
account of rarer ones.

Logical end-point is REDUCTION of the data array to one of PRESENCE
OR ABSENCE OF SPECIES (this is a transformation to the numbers 0 or 1), where
all species contribute equally.

Example: Loch Linnhe macrofauna, subset.

Sample: 1 2 3 4 PRESENCE/ABSENCE
Species
Echino. 1 0 0 0 Sample 1 2 3 4
Myrioc. 1 0 0 1 1 -
Labido. 1 1 0 1 2 33 -
Amaeana 0 1 1 1 3 0 80 -
Capite 0 1 1 1 4 57 86 67 -
Mytiius 0 0 0 0

NOTE: 1) NEED TO USE Tlog(l+y) not log y which DISTORTS TRANSFORM
SEQUENCE. log (1l+y) intermediate between V/ and presence/absence for moderate
or large counts but less severe than /Y for small counts.

2) V/y preferred to lTog(l+y) because Bray-Curtis is INVARIANT TO A SCALL
CHANGE (eg. for biomass) if vy 1is used. (Littie difference in
practice though).

3) As severity of transform increases, more species contribute, so
sampie relationships are expressed in higher-dimensional space, and
ordination in 2-d is harder (eg. Fig. 9.1). So, WRONG to assume that
TRANSFORMS GIVING LOWER STRESS ARE BETTER; the converse is true if
added species are important.
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GEEP mesocosm nematodes (Warwick et al., 1988). MDS of 4 boxes
from 4 treatments {(C,L,M,H). Bray-Curtis similarities from
transformed counts: a) no transform, b) V, ¢) V¥, d)

presence/absence. Stress: a) 0.08, b} 0.14, ¢) 0.19, d) 0.18

SAME TRANSFORM SEQUENCE APPLIES TO PCA (and other ordinations) with
much the same consequences.

Log (or /¢) transforms affectively REDUCE DATA TO A 6 POINT SCALE,
i.a. 0 = absent, ! = one individual, 2 = handful, 3 = sizeable, 4 =
abundant, 5 = very abundant; replacing data by this scale will make
no real difference to the multivariate displays. This may appear
crude but often genuinely reflects inherent variability, so greater
accuracy in counting may be unnecessary.



- 147 -

CONCLUDE :

1)

CHOICE OF TRANSFORM often has a bigger effect on conclusions than the
CHOICE OF ORDINATION method.

2) "What is the RIGHT TRANSFORM for a multivariate analysis?" is largely
a BIOLOGICAL rather than a STATISTICAL question {unlike the use of
transforms for validating assumptions); the choice of transform
determines how the similarity of two samples is defined.

RECOMMEND s

Use INTERMEDIATE transform {eg. ¥, ¢/ or LOG) rather than either of

the two EXTREMES:

a)

NO TRANSFORM - MDS reflects only 2 or 3 commonest species, s0
INTERPRETATION is likely to be SHALLOW.

PRESENCE/ABSENCE - CHANCE OCCURRENCES of rare species DOMINATE the
SAMPLE RELATIONSHIPS in high dimensions and make it difficult to get
an interpretable low-dimensional ordination.
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LECTURE 10
SPECIES REMOVAL AND AGGREGATION

SPECIES REMOVAL
Two reasons for ELIMINATING SPECIES discussed earlier:

a) For sample PCA (not MDS) ordination, must reduce to (say) <50
species, else problems with eigenvalues.

b) For species ordinations, though MDS and CLUSTER are possible for all
species, rarer (chance) species must be excluded for an interpretable
outcome.

RECOMMEND RETAINING SPECIES ACCOUNTING FOR >p% of total score
(abundance or biomass) in ANY ONE SAMPLE (p chosen to reduce to required
number, typically p = 3 or 4). Allows for high diversity/ low abundance
sampies which could have all species eliminated by simple selection of the top
q% most abundant species over all samples.

SPECIES REDUNDANCY: Since sample relationships can often be well
sumnarised in a 2-d ordination (from, say, a 100-d species space), many
SPECIES MUST BE INTERCHANGEABLE in the way they characterise the samples.
This can be seen by performing MDS on a randomly chosen subset (say 20%) of
species:

a b
D 0 o
c o
o
A 0 N c ®
A A A AA ‘IEC
uac A L)
c
s
a
a
£ % a E
£ E .
G = &
g ¢

Fig. 10.1 Frierfjord macrofauna counts. Sample MDS (Bray-Curtis, /) for:
a) all 110 species, b) 19 random species. (Stress: a) 0.14, b)
0.13)
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Above example of no practical interest, but suggests:

SPECIES AGGREGBATION to higher taxonomic levels.

If results from identifications to higher taxonomic levels are
comparabie to a full species analysis:

a) a great deal of LABOUR CAN BE SAVED;

b) LESS FAUNAL EXPERTISE NEEDED - major factor in parts of the worid
where fauna is poorly described.

METHODS AMENABLE TO AGGREGATION:

1) MULTIVARIATE:
A1l ordination/clustering techniques.

Empirical evidence is increasing that identification only teo family
level makes little difference.

2) DISTRIBUTIONAL:

a) Aggregation for ABC curves is possible; family level analyses are
often identical to species level analyses {see Figs. 10.6 and 10.7).

D) Untried for other methods (eg. Individuals amongst species curves).

3) UNIVARIATE:

a) Concept of  “indicator  groups” is  well-established  (eg.

nematode/copepod ratios).

b) Can define diversity indices at hierarchical taxonomic levels (though
not commonly used in practice}.

Warwick (1988) hypothesises further motivation: that pollution may
change community composition at higher taxonomic levels {eg. phyla) whereas
natural variables (grain size, water depth etc.) modify it more by species
replacement (within phyla). Thus, distribution of higher taxa may even relate
more ciosely to the centamination gradient than species data, the latter being
more compiicated by effects of confounding natural variables.
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MULTIVARIATE EXAMPLES
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Fig. 10.2 Mesocosm copepod counts - 3 levels of nutrient enrichment {Gee et
al., 1985). Sampie MDS plot (Bray-Curtis, ¢/ transform); species
data aggregated into genera and families {Warwick, 1988)
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Fig. 10.5 MDS for coral species (n=75) and genus (n=24) cover data at South
Pari Isiand, Indonesia. E1 Nifio occurred in 1982-3. 1=1981,
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GRAPHICAL/DISTRIBUTIONAL EXAMPLES
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. 10.6 Loch Linnhe macrofauna. (A) Diversity H’, (B)-(L) "ABC" curves

for 11 years, of biomass (crosses) and abundance (squares).
Analysis at species level, Warwick (1986)
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10.7 Loch Linnhe macrofauna. (A) Diversity H’, (B)-{(L) "ABC" curves

for 11 years, of biomass (crosses) and abundance (squares) for
data aggregated to families, Warwick (1986)
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UNIVARIATE EXAMPLE

Fig.
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LECTURE 11

LINKING MULTIVARIATE AND UNIVARIATE COMMUNITY ANALYSES
TO ENVIRONMENTAL VARIABLES

APPROACH

1)

2)

3)

FAUNAL AND EMVIRONMENTAL ANALYSIS SEPARATED initially, i.e. the biota
is allowed to "tell its own story", without the use of physical or
chemical data:

a) to DEMONSTRATE the RELATIONSHIPS between samples and differences
(if any) between sites (/times),

b) to INFER COMMUNITY DISTURBANCE at some sites.

ENVIRONMENTAL VARIABLES ANALYSED ON THEIR OWN, for similar reasons.
Two classes of variables:

"NATURAL" PHYSICAL {or "background") VARIABLES, such as depth of the
water column, sediment granulometry, salinity, etc. and

CONTAMINANT VARIABLES, measuring chemical impact.

Analysis attempts:

a) to DEMONSTRATE DIFFERENCES (if any) in physical or chemical
variables between the sites,

b) to REDUCE the COMPLEXITY of the environmental measures,
particularly the chemical data, so the nature of the impact (if
any) can be summarised by a few key variables.

SUMMARY REPRESENTATIONS of both biolegical and environmental analyses
are VIEWED TOGETHER:

a) to examine whether changes between sites (/times) seem to be the
product of differences in "natural” environmental varijables, or

b) are correlated with inferred or measured contaminant impact.

ANALYSIS OF SNVIRONMENTAL DATA

with 1it

differen

UMIVARIATE: Background (physical) variables are typically univariate,
tle variability between replicates within a site {e.g. water dapth).

Where thers is variability, and it is helpful to establish site
ces, use ANOVA and confidence intervals (e.g. as for diversity).
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MULTIVARIATE: Chemical measurements can often be highly multivariate
{e.g. wide range of PAH compounds, PCB congeners, heavy metals etc.)

Example: Frierfjord sediment - heavy metals.

Table 11.1

Frierfjord sediments. Metal concentrations (pg g ' dry wt, Fe as %)
in top 2 cm from 3 replicate cores at sites A-E,G.
Abduilah & Steffenak (1988).

Site Cu Zn  Pb  Ni Cr Cd Mn  Fe
A 28 141 73 33 40 0.8 454 3.5
26 139 71 30 40 (0.6) 653 3.3

27 147 67 29 35 (0.6) 503 3.1

B 48 238 134 33 50 (0.6) 1050 3.5
47 228 130 32 50 1.1 2880 3.5

66 297 167 32 40 1.1 664 3.1

c 44 228 135 35 51 0.8 1500 4.1
42 216 126 35 60 0.8 3570 4.2

42 208 117 33 45 1.1 5880 4.0

D 48 241 142 37 56 0.9 1720 4.3
39 205 114 33 50 0.8 8480 4.4

44 238 141 35 34 1.1 5440 4.1

E 38 199 160 22 40 0.8 484 2.2
40 241 156 25 40 1.1 925 2.1

107 275 184 28 45 1.1 1400 2.5

F 48 328 118 32 35 3.6 10380 3.1
44 296 110 30 35 3.1 5880 3.0

47 320 118 32 35 3.4 7430 3.0

G 67 349 212 35 61 2.2 1060 2.8
70 357 229 35 66 2.5 638 2.7

77 417 267 38 70 4.5 819 2.8
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SAME RANGE OF MULTIVARIATE METHODS AVAILABLE as for faunal anaiyses
(replace species by chemical "species"). However, type of data is different:

a) ZEROS do NOT predominate.
b) distribution NOT highly RIGHT-SKEWED.
¢) REDUNDANCY can be very extreme, i.e. similar chemical compounds
correlate very closely with each other along a spatial
contaminant gradient.
So, possibly after (mild) TRANSFORMATION (e.g. '),
a) MULTIVARIATE NORMAL assumptions often justified;
h) PCA is useful, a 2-d ordination often giving a good
representation of site chemistry,
¢) TESTING of site differences can either be by MANOVA (e.g. Wilks’
A) or by ANOSIM on a Euclidean distance dissimilarity matrix.
Example: Frierfjord sediment metais.

Fig. 11.1
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Frierfjord sediments. 2-d PCA of metal data of Table 1l.l ( -
transformed and normalised)



- 159 -

NOTE, im Fig. 11.1:

1) First 2 PCs ACCOUNT FOR 69% OF VARIABILITY, so 2-d ordination is not
too bad a representation.

2) Some DIFFERENCES BETWEEN SITES (p<0.001 in ANOSIM test}, principally
between A, G and the rest.

3) PC1 represents an AXIS OF INCREASING CONTAMINANT LOAD, the weights
given to the {(normalised) Cu, Zn, Pb, Ni, Cr, Cd, Mn, Fe levels being
0.41, 0.48, 0.46, 0.30, 0.35, 0.35, -0.05 and -0.21.

4) PC1 AXIS is thus a UNIVARIATE descriptor of the overall metal load,
useful in relating this chemistry fo faunal descriptions.

5) Though it exists, the CONTAMINANT GRADIENT is WEAK, no more than a
factor of 2 or 3 between the extremes, A and G. (PAH gradient weaker
still).

RELATION TO FAUNAL ANALYSES - FIRST APPROACH

SELECT at most 2 or 3 DESCRIPTORS of the CONTAMINANT GRADIENT (eg. one
for metals, one for hydrocarbons) - even 2 or 3 could be ambitious if the
different classes of contaminants are well-correlated.

The two cases considered below are when the biological data are
UNIVARIATE (eq. diversity indices) and when they are MULTIVARIATE (eg.
ordinations).

UNTVARIATE

REGRESSION is a possible technique: either SIMPLE LINEAR REGRESSION
(1 environmental variable)
or MULTIPLE LINEAR REGRESSION (for 2 or more)

or NON-LINEAR REGRESSION {if thersa is a range of contaminant vaiues and
sufficient replicates fo Jjustify a mors complex "dose-response” curve.)
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Example: Frierfjord macrofauna.

Shannon Diversiby H'
3.5—|'

293

1.3~

Mebail grodlend

Fig. 11.2 Frierfjord macrofauna abundances. Shannon diversity H’ regressed
on an overall measure of sediment metal concentration {latter is
mean PC1 at each of the 6 sites, from the PCA of Fig. 11.1). x -

replicate grabs, — fitted regression line, --- 95% confidence
"funnel” for the mean H’ at any metal concentration

NOTE: Simple linear regression of H’ on metal levels fis not
convincing!
a) Stope just fails to differ significantly from zero, at 5%.
h) Linear relation s not adequate {(but data does not Justify more

complex fit).

c) Most prominent feature {clear from the earlier ANOVA also - Fig. 6.1}
is the general drop in diversity from the "reference’ site {A}).
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MULTIVARIATE

SUPERIMPOSITION OF ENVIRONMENTAL VARIABLES OF FAUNAL ORDINATION: an
effective visual technique performed separately for each environmental
variable.

This may allow a GRADIENT in the ENVIRONMENTAL VARIABLE to be matched
visually to a GRADIENT of change in the COMMUNITY structure.

Example: Bristol Channel zooplankfon, April 1978.
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Fig. 11.3 MDS of 57 sites {from Bray-Curtis similarities, on /v -
transformed counts; siress = 0.11). For map of sites and
corresponding cluster analysis, see Figs. 3.2 and 3.3

Though clear evidence of clusters {from Fig. 3.3), overall pattern is
one of GRADATION of COMMUNITY STRUCTURE across the ploit (note characteristic
"arching", common for strong gradation).
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Physical variable driving the structure is SALINITY s, ranging from
24.6% (site 1) to 35.1% (site 52). Non-linear TRANSFORMATION needed (36% -
35% is a more important change than 26% - 25%); suggest

s* = a - b.log(36 - s) (11.1)
Choosing a = 8.33, b = 3 gives 1 < s* <9, and can:

CATEGORISE (transformed) SALINITY into {say) 9 groups (s* to nearest
integer), and SUPERIMPOSE on MDS.

6 . ! *
4
55 a B
B 5 4
6 5 8§ = 3
Eg's 5555 4 3
8 6 22
6 55 2 2
7 8 7 i 4
57 4
q 7 v 4 4
7
8
998
7 i

Fig. 11.4 MDS of 57 sites, with increasing salinity categories
superimposed. 1: <256.3, 2: (26.3, 29.0), 3: (29.0,°31.9), ..., &
(34.7, 35.1), 9: 235.1%

Alternatively, at each sampie point on the faunal MDS, draw a symbol
(e.g. circle) with SIZE PROPORTIONAL to the ENVIRONMENTAL VARIABLE value for

the sample.
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Example: Frierfjord macrofauna counts (V¢ - transformed)

—
f11
»
‘E*ﬁ

Fig. 11.5 MDS of sites A-E,G with superimposed values of (a) water depth
(22-113 m), (b) sediment median grain size (7.8-16.5 pm)}, (c)
mg}a] levels {PCl in Fig. 11.1) and {d) "total" PAH (4.4-14.8 pg
g )

1) Site grouping on the MDS bears LITTLE RELATION to the (weak) metal

and PAH CONTAMINANT GRADIENTS.

2) Sediment granulometiry is NOT A DETERMINANT of COMMUNITY DIFFERENCES
here (B % C span the range of grain sizes but have the same
communities).

3) DEPTH-RELATED differences between the sites appear to be fhe major

CORRELATE of COMMUNITY DIFFERENCES.
parts of the fjord is likely to be a significant "stress" factor.)

{Seasonal anoxia in the deeper




Sometimes MORE THAN ONE AXIS OF CHANGE MAY BE SEEN, correlating with
different environmental variables.

Example: Exe nematode abundances, Field et al. (1982)

O O

5 o
.8 (ED
8 @ d) ( | ®

a) 5 : (b

Fig. 11.6 MDS of 19 sites (Fig. 5.1), with values of: (a) mean salinity of
interstitial water (10-90% of standard seawater), (b) median
sediment particle size (0.06-1.14 mm), superimposed at each site

Grain size forms a gradient from bottom left to top right, whereas
salinity distinguishes the "middle" from the "end" sites along the first MDS
axis.

Though the visual approach is generally more helpful, FORMAL TESTING
of gradients can be performed by:

a} REGRESSING each environmental variable on the {x,y) CO-ORDINATES of
the SAMPLF LOCATIONS on the MDS; this would bpe multipie linear
raegression [and nct appropriate for a curvilinear gradient).

bj Using 2-WAY ANOSIM on sites (treated as replicates), which are
categorised by, say, 2 environmentai variables at 2 levels, e.g.
deep/shallow, high/low contaminant loads. This would need a
reasonable number of sites (with some in all 4 combinations).
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RELATION TO FAUNAL AMALYSES - SECOND APPROACH

First approach designed mainly to show COMMUNITY pattern related to
ONE ENVIRONMENTAL VARIABLE at a time. Alternative considers ALL environmental
variables together and COMPARES ordination of biota to ORDINATION of
environmental variables.

Example: Exe nematode abundances.

i8
10 é§
(%) i
- 19

SN 7 l ) 1

Fig. 11.7  (a) MDS of 19 sites (as in Fig. 5.1), (b) PCA of 4 environmental
variables (salinity, median particle size, % organics, depth of
H,S layer)

The close match of patterns shows these 4 variables "EXPLAIN" biaota
clusters (in Fig. 11.7a) well. Two questions: Would subset of environmental
variablas do as weil? Would more variables do betier? {2.g. height up shore,
water table depth.)

Answer by DEFINING MATCH between two ordinations as some form of RANK
CORRELATION (p) between underiying DISSIMILARITY MATRICES {Bray-Curtis and
Euclidean distance, respectively}. Then find subset of environmental
variables which MAXIMISES p. Here, this is the 4 variables in Fig. 11.7b.



IMPLICATIONS FCR DESIGN

1)

SITE SELECTION: where there is choice, attempt to select sites such
that VARIATION IN "NUISANCE" (physical) VARIABLES IS SMALL, (i.e.
small enough not to have a significant affect on community
structure).

Where between-site variation in natural variables is considerable,
AVOID DESIGNS in which important physical variables are TOTALLY
CONFOUNDED (i.e. run in parallel) with contaminant gradients. Ii may
then be possible to DISTINGUISH SEPARATE PHYSICAL AND CONTAMINANT
GRADIENTS in an MDS plot.

(Alternatively, choose CONTROL SITES MATCHED to the PHYSICAL
VARIABLES for each impacted site.)

Where within-site variation in natural variables is considerable
(comparable with between-site), MDS distinction of contaminant and
natural gradients is greatly AIDED by separate MEASUREMENT of
environmental variables MATCHING EACH COMMUNITY REPLICATE.
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LECTURE 12

CAUSALITY: COMMUNITY EXPERIMENTS IN THE FIELD AND
LABORATORY

In experimental situations we can investigate the effects of a single
factor (the TREATMENT) on community structure, while other factors are held
constant or controlled. There are three main categories of experiments that
can be used:

1. 'NATURAL EXPERIMENTS’ - HNature provides the treatment: i.e. we
compare places or times which differ in the intensity of the
environmental factor in question.

e FIELD EXPERIMENTS - The experimenter provides the treatment: i.e.
environmental factors are manipulated in the field.

3. LABORATORY EXPERIMENTS - Environmental factors are manipulated by the
experimenter in Taboratory mesocosms or microcosms.

The degree of ’naturalness’ (hence realism) decreases from 1-3, but
the degree of control which can be exerted over confounding environmental
variables increases from 1-3.

In all cases care should be taken to avoid PSEUDOREPLICATION, i.e. the
treatments should be replicated, rather than a series of ‘replicate’ samples
taken from a single treatment (pseudoreplicates). This is because other
confounding variables, often unknown, may also differ between the treatments.
It is also important to run experiments long enough for community changes to
occur: this favours components of the fauna with short generation times (see
Lecture 13).

NATURAL EXPERIMENTS

The obvious Togical flaw with this approach is that its validity rests
on the assumption that places or times differ only in the intensity of the
selected environmental factor (treatment). Experimental design is often a
praoblem, but statistical techniques such as TWO-WAY ANOVA or TWO-WAY ANOSIM,
which enable us to examine the treatment effect allowing for differences
between sites, are usefui.

fxample: The effects of disturbance by soldier crabs (Nictyris
platycheles) on meiobenthic community structure,

LOCATION: Sand-flat at Eagiehawk Neck, S.E. Tasmania.
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SAMPLING: Sediment disturbed by crabs in discrete patches.
blocks of 4 samples with each block including 2 disturbed and 2 undisturbed:
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Fig. 12.1 Sketch showing the type of sample design. Sample positions
{large dots) in relation to disturbed sediment patches (stippled)
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UNIVARIATE INDICES:

Table 12.1

Mean values per core sample of univariate measures for
nematodes, copepods and total meiofauna (nematodes +
copepods) in the disturbed and undisturbed areas.

The significance levels for differences are from a two-way
ANOVA, i.e. they allow for differences between blocks,
although these were not significant at the 5% Tevel.

Tot.ind. Tot.sp. d H’ J’

Nematodes

Disturbed 205 14.4 2.6 1.6 0.58
Undisturbed 200 20.1 7] 2.2 0.74
Significance (%) 91 1 0.3 0.1 1
Copepods

Disturbed 94 5.4 1.0 0.96 0.59
Undisturbed 146 5.7 1.0 0.84 0.49
Significance (%) 11 52 99 52 38
Total mefofauna

Disturbed 299 19.8 3.4 2.0 0.66
Undisturbed 346 25.9 4.4 2.3 0.69
Significance (%) 43 1 3 3 16

For NEMATODES: significant reduction in total number of species,
Species Richness, Shannon Diversity and Evenness in relation to disturbance.

For COPEPODS: no differences in any of these univariate measures.



GRAPHICAL/DISTRIBUTIONAL PLOTS
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Fig. 12.2 Replicate Kk-dominance curves for NEMATOCE abundance in each
sampling block. D = disturbed, U = undisturbed

Summary statisiics K, and R (see Lecture 2) both show significant
treatment effect when tested with two-way ANOSIM.

For COPEPODS {figure not given here), k-dominance curves are
intermingled and crossing, and there is no significant treatment effect on K,
and R.
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MULTIVARIATE ANALYSIS:

oecopepods

¢ meiofauna

Fig. 12.3  MDS configurations for nematode, copepod and ‘meiofauna’
(nematode + copepod) abundance.

Circies = Block 1, Squares 2, Pentagons 3, Jia

Open symbols = disturbed, shaded = undisturbed

Note similarities: both disturbed samples within each block are above
both undisturbed; blocks arranged in sequence {left to right) 3,4,2,1.



Table 12.2

Results of the two-way ANOSIM test for treatment
(disturbance/no disturbance) and block effects.

DISTURBANCE BLOCKS
R Statistic Sig.{%) R statistic Sig. (%)
Nematodes 1.0 1.2 0.99 0.2
Copepods 0.56 3.7 0.70 0.2
Meiofauna 0.94 1.2 0.94 0.2

For both nematodes and copepods, two-way ANOSIM shows significant
effect of both treatment {disturbance) and blocks, but differences more marked
for nematodes (higher values of R statistic).

CONCLUSIONS:

Univariate indices and graphical/distributional plot only
significantly affected by crab disturbance for nematodes. Multivariate
analysis reveals similar response for nematodes and copepods (i.e. seems 1o
be more sensitive). In multivariate analyses, natural variations in species
composition across the beach (i.e. between blocks) were about as great as
those between treatments within blocks: disturbance effect would not have been
clearly evidenced without this block sampling design.

FIELD EXPERIMENTS

These include, e.g. caging experiments to exclude or include
predators, controlled pollution of experimental plots, big-bag experimenis
with plankton. Have mostly been used so far for population rather than
community studies: not possible to find an example where univariate,
grapnical/distributional and multivariate technigues have all been applied.

Example: Effect of sediment particle diameter on a harpacticoid
copenod community {Hockin, 1882).

LOCATION: Sandy estuarine beach, Ythan sstuary, Scotland.

SAMPLING: 2 replicates of 4 grades of gliass beads deplioyed in piastic
trays in randomised block design at fwo tide Jevels. Left in field for 14
wks, with core sample taken every 5 days.



UNIVARIATE INDICES:
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Fig. 12.5 The index of diversity (based on the log-series distribution)

size).

for upper (solid circles) and lower (open circles) sites

ANOVA on both the number of species and the species diversity revealed
no significant differences with respect to the treatment {sediment particle
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Table 12.3

Particle diameter of artificial monometric sediments in
which the maximum population densities of the numerically
dominant harpacticoid copepod species were found.

COPEPOD SPECIES PARTICLE DIAMETER (MM)
Arenosetella germanica 0.267
Arenosetella tenuissima 0.367
Arenopontia subterranea 0.147
Evansula incerta 0.367
Stenocaris pygmea 0.267
Heterolaophonte minuta 0.485
Heterolaophonte littoralis 0.485
Esola typhlops 0.367
Paronychocamptus curticaudatus 0.485
Huntemannia jadensis 0.147
Nannopus palustris 0.147

Although no MULTIVARIATE ANALYSES were done, different species reached
maximum abundance in different sediment grades. This suggests that a

multivariate analysis may well have provided discrimination beatween
treatments.

LABORATORY EXPERIMENTS

dore or less natural communities of some components of the biola can
pe maintained in Taboratory wesocosms  or microcosms  (also  ia outdoor
mesocosms), and subjected to a variety of manipulations.

Exampia: Effacts of aorganic enrichment on meiofaunal communitly
structure (Gee et al., 198%).
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LOCATION: Sediment from Oslofjord; mesocosm at Soibergstrand, Norway.

SAMPLING: Undisturbed 0.25 m° box cores of sediment transferred to
mesocosm basin. 4 replicate boxes dosed with high (200 g € m?) and low (50
gC mq) levels of powdered algae (Ascophyllum), with 4 undosed controls, in
randomised block design. Meicfauna sampled 56 days after dosing: 3 cores from
each box combined to give cne sample.

UNIVARIATE INDICES:

Nematodes: No significant differences in species richness or
diversity between treatments, but evenness significantly higher in enriched
boxes than controls.

Copepods: Significant differences in species richness and evenness
between treatments, but not in diversity.
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Table 12.4

Univariate measures for all replicates at end of
experiment, with F-ratio and significance Tevels
from one-way ANOVA.

Treatment Sample Species  Shannon-Wiener  Species

number richness index evenness
Nematodes

Control 1 3.023 2.245 0.750

2 3.739 2.394 0.774

3 3.357 2.470 0.824

4 4,589 2.764 0.829

Total 6.342 2.738 0.747

Low dose | 4.386 2.856 0.877

2 2.652 2.474 0.840

3 4.669 2.885 0.875

4 2.327 2.268 0.860

Total 6.153 2.877 0.791

High dose 1 2.856 2.168 0.782

2 2.824 2.388 0.843

3 4,302 2.395 0.829

4 4.088 2.466 0.853

Total 5.508 2.677 0.759

F-ratio 0.043 1.387 5.131
Significance ns ns P<0.05
Copepods 1 2.525 1.927 0.927
Control 2 1.924 1.560 0.96%8
3 2.502 1.768 0.908

4 2.471 1.936 0.931

Total 2.531 2.102 0.877

Low dose 1 1.804 1.597 0.643
2 1.661 1275 $.532

3 1.655 1.160 0.484

4 1.786 1.535 0.640

Total 1.907 1,581 0.584

4igh dose i 1.747 se4d 0.747
2 0.373 3.397 0.820

3 1.034 3.297 Q.155

4 1.17¢9 .236 1,372

Total 1.568 1.683 0.702

F-ratio 1f:71E Z2.354 4,558
Significance P<0.001 ns P<G.05
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GRAPHICAL/DISTRIBUTIONAL PLOTS:
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Fig. 12.6 k-dominance curves for A nematodes, b total copepods and €
copepods omitting the ‘weed’ species of Tisoe for summed
replicates of sach treatment. Circles = conirol, sguares = low
dose, irranglss = igh cose

NEMATODES: No obvious treatment effect.

COPEPODS: Control with highest diversity; when Tisbe spp. omitted,
sequence of increasing elevation of curves (decreasing diversity) from control
to high dose.
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MULTIVARIATE ANALYSES:

Nemalodes

> ©

H 8

Copepods )

Total Meiofauna
?

3

w

Fig. 12.7 MDS of double square root transformed abundances of nematodes,

copepods and total meiofauna (nematodes + copepods).
control, squares = low dose, triangies = high dose

Circles
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Table 12.5

Values of the R statistic from the ANOSIM test, in pairwise
comparisons between treatments, together with significance
levals. € = control, L = Tow dose, H = high dose.

TREATMENT STATISTIC % SIG

VALUE LEVEL

Nematodes (L, C) 0.27 2.86
(H, C) 0.22 5.71

(H, L) 0.28 8.57

Copepods (L, C) 1.00 2.86
(H, C) 0.97 2.86

(H, L) 0.59 2.86

NEMATODES: Only differences between low dose and control treatments
are significant at the 5% level.

COPEPODS: Differences between all treatments significant at the 5%
Tevel.

Note higher values of the R statistic for copepods in all cases.

CONCLUSIONS: Univariate and graphical/distributional techniques show
Towered diversity with increasing dose for copepods, but no effect on
nematodes. Multivariate techniques clearly discriminate between treatments
for copepods, and still have some discriminating power for nematodes. Changes
in nematode community may not have been detectable because of great
variability in abundance of nematodes in the high dose boxes.
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LECTURE 13

DATA REQUIREMENTS FOR BIOLOGICAL EFFECTS STUDIES:
WHICH COMPONENTS AND ATTRIBUTES OF THE BIOTA YO EXAMINE

COMPONENTS: Pelagos

Benthos

ATTRIBUTES: Abundance

Biomass

{Production)

PLANKTON

ADVANTAGES:

plankton
fish

soft-bottom

- macrobenthos

- meiobenthos

- {microbenthos)

hard-bottom

- epifauna

- motile fauna
- macrofauna
- meiofauna

species
higher taxa

species
higher taxa

= Integrate 2cological conditions over areas; useful in monitoring more

glebal changes.

- Taxonomy moderately =sasy.

JISADVANTAGES:

- Not useful for monitoring Jocal effects, due to mobiliily.



Standard deviation

Example: Continuous Plankton Recorder Survey of NE Atlantic.

27 Zooplankion
g 15'
t .
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0
g 10°
.
1950

Year

fig. 13.1 First principal components for zooplankton and phytoplankton
(1eft) in each of the 12 areas shown in the chart {(right).
Graphs scaled to zero mean and unit variance

FI13

ADVANTAGES:

- Again more useful for general rather than local effects, but demersal
spp. may have site-fidelity

- Taxonomy easy .at least in Eurcoe)

- O0F immediate commerciai/pubiic interesi

CISABYANTAGES:

- Strictly quantitative sampling difficult

- Uncertainty about site-fidelity
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Example: Effects of mining activity on coral-reef fish communities
in the Maldives.
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Fig. 13.2 MDS ordination of fish species abundance data from minad (M) and
un-mined (U) reet-tops

HACROBENTHOS

ADYANTAGES:

- Non-mobile, therefore useful Ffor local effectis
- Taxonomy relatively 2asy

- Juantitative sampniing =2asy

- Extensive vesearcn literature on commupity erfects

DISADYANTAGES:
- Sampling requires relatively large ships

- Sample-processing at sea labour-intensive
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- Response time relatively sTow (iong generation time)

- Unsuitable for causaiity experiments (slow response time, piankionic
larvae).

Example: Amoco Cadiz oil-spill in the Bay of Morlaix.
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Fig. 13.3 MDS for macrobenthos at station "Pierre Noire". Sampling months
are A:4/77, B:8/77, C:9/77, D:12/77, E:2/78, F:4/78, G:8/78,
H:11/78, 1:2/79, J:5/79, K:7/79, L:10/79, M:2/80, N:4/80, 0:8/80,
P:10/80, Q:1/81, R:4/81, S$:8/81, T:11/81, U:2/82. 0il-spill was
during 3/78, i.e. between E and F

MEIOBENTHOS

ADVANTAGES:
= Usaful for local affects studies
- Quantitative sampling easy Trom small ships

- Samples nead not be arocassed 2n 3RTD

1
Y

otantially fast response {short generation Time)

- Good for causality experiments {direct benthic development, fast
response)
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DISADVANTAGES:
- Taxonomy considered difficulty

- Community responses not well known or documented

Example: Effects of soldier crab disturbance on nematode assemblages
at Eaglehawk Neck, Tasmania.

o
o

CUMULATIVE % ABUNDANCE

]

BLOCT 1 BLOCX 4

) ) ] (L] 1 1. 1»

SPICIES RANX

2.4 k-dominance curves for disturbed (D) and undisturbed (U} sampies
in 4 separate sampling blocks

-y
—

(o]
ja—

The macropenthos i meicbenthos may RESPOMD DIFFERENTLY to ditTerent
kinds of perturbation (e.g. physical disturpance. “poiiution’) so that a
comparative siudy o7 both may oe indicative or fne causa.



Example: Hamilton Harbour, Bermuda.

Fig. 13.5
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k-dominance curves for macrobenthos (left) and meiobenthic
nematodes (right) at six stations in Hamilton Harbour, Bermuda.
[levated macrofauna curves at stations 3 and 4 suggest that
physical disturbance 1is the cause, since the corresponding
meiofauna curves at these sites are not similarly affected

HARD-BOTTOM EPIFAUNA

ADVANTAGES:

- Immcbile; good for local effects

= Two dimensional nature permits non-destructive {visual) sampling for
detarmination of tempcral changes

DISADVANTAGES:

- Remote sampling difficult

= Enumeration of colonial organisms difficult

- Biomass measurements difficult
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Example: Effects of the 1982-3 E1 Nifio on Indonesian reef corals.

Fig. 13.6 MDS for coral species percentage cover data for

Istand. 1=1981, 3=1983 eic

HARD-BOTTOM MOTILE FAUNA

DISADYANTAGES:
- Remote sampling difficuit

Juantification difficuit

- lesponses to aertursation not

- Suitable hapitat {2.9. algae) aot always available

10wWN

South Pari



Example: Macrofauna and meiofauna of replicated intertidal seaweed
samples from the Isies of Scilly.
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Fig. 13.7 MDS macrobenthos (left) and meiobenthos {right) from different
species of seaweeds: Ch=Chondrus, Lo=Lomentaria, La=lLaurencia,
C1=Cladophora, Po=Polysiphonia. Note similarity between the two
configurations

ABUNDAMCE, BIOMASS QR BOTH?

Abundances are easiar %o measure, but biomass may be a better
reflection of the zcological importance of a species within a community. In
practice, muitivariate anaiyses of abundance and biomass data give remarkabiy
similar results, despite the fact that the species mainiy responsible for
discriminating between stations are different.



Example:

Frierfjord macrofauna
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abundance biomass
0 ¢
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25 e G 66"
GGG EGEGE
Fig. 13.8 MDS ordinations for macrofauna abundance and biomass. MNote the

close similarity

Perturbations of various kinds may affect the distribution of numbers
of individuals among species differently from the distribution of biomass
among species. This is the basis of the "ABC’ {Abundance Biomass Comparison)
method for the assassment of disturbance, which was dealt with in Lecture 8.

SPECIES OR HIGHER TAXA

In a wide variety of poliution-impact studies, it has been found for
both graphicai-distributional and muliivariate anaiyses that there is
surprisingly Tittle Toss of information when the species data are aggregated
ints higher taxa, 2.2. genera. famiiias or aven phyla. Initial collection of
data at the lavel of nigher faxa would resuii in & considerapie saving of Time
(and cost} in the analvsis of samples. This was deait wita in more ietail in

1

Lecture 10.
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RECOMMENDATIONS

It is difficult to give firm recommendations as to which components
or attributes of the biota should be studied, since this depends on the
problem in hand and the expertise and funds available. In general, however,
the wider the variety of components and attributes studied, the easier the
results will be to interpret. A broad approach at the level of higher taxa
is often preferable to a painstakingly detailed analysis of species
abundances. If only one component of the fauna is to be studied, then
consideration should be given to working up a larger number oOf
stations/replicates at the level of higher taxa in preference to a small
number of stations at the species level. Of course, a large number of
stations at the species level is always the ideall
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LECTURE 14

RELATIVE SENSITIVITIES AND MERITS OF UNIVARIATE,
GRAPHICAL/DISTRIBUTIONAL AND WULTIVARIATE TECHNIQUES

Two communities with a completely different taxonomic composition may
have identical univariate or graphical/distributional structure, and
conversely those comprising the same species may have very different
univariate or graphical/distributional structure. Do species dependent and
species independent attributes of community structure behave the same or
differently in response to environmental changes, and which are the most
sensitive? These questions will be addressed by reference to a number of case
studies in which a variety of methods of data analysis has been employed.

Example 1: Macrobenthos from Frierfjord/Langesundfjord, Norway
(I0C/GEEP 0slao Workshop}.

MAP OF SITES: See Fig. 1.1.

UNIVARIATE INDICES:
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Site A has higher species diversity (H’) and site C the lowest: others
not significantly different.
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GRAPHICAL/DISTRIBUTIONAL PLOTS:
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Fig. 14.2  ABC olots based on totals of 4 replicates. 3quares = abundance,
¢rosses = biomass
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These indicate C, D and E most stressed, B moderately stressed, A and
G unstressed. No tests have been done to determine significance of

differences.

MULTIVARIATE ANALYSES:
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Fig. 14.3 MDS of 4 replicates at each of sites A-£,G (Bray-Curtis
similarities on /¥ -transformed counts)

Stations B,C and D cluster together (ANOSIM separates 3 from A and C),
£ and G together (separatad with ANOSIM), A on its own. Clusters correlate
Wwith water denth rather than measured levels of anthropogenic variabizs (see
F . Ll

CONCLUSIONS: Muitivariate analysis the most sensitive  Tor
discriminating stations (only B3 and C not significanily difverent).
Univariate and grapnical distributieas conflict with this. For exampie, £ &

5 have different ABL alots out cliustar together; diversitly at £ is not
significantly different from 0, but they are the furthest apart on the MDS
plots. However, 8, C and D all have Tow diversity and ABC indicates

disturbance. Most Tikely explanation is that these deep-water stations are
affected by seasonal anoxia, rather than anthropogenic poilution.



Example 2: Macrobenthos from Hamiiton Harbour, Bermuda (IOC/GEEP
Bermuda Workshop).

MAP OF SITES:

Fig. 14.4 Map of Hamilton Harbour showing locations of 6 sampling stations

UNIVARIATE INDICES: See Fig. 8.1. HB with highest diversity, H3 and
H4 with Jowest diversity (significantly below neutral model prediction, see
Table on page 128).

GRAPHICAL/DISTRIBUTICNAL PLOTS:  ABC curves show H2, H6 and HY
undisturbed, H5 moderately disturbed, H3 and H4 moderately/grossiy disturbed
(Fig. 14.5}.

MULTIVARIATE ANALYSES: On MDS (Fig. 14.6) stations ordered (lefi to
right) 5,4,3,2,7.6. ANOSIM gives all sites significantly different from each
3ther, Superimpasing vaiues of environmental variablas shows closa
sgrralation wizh metals and 73T, 70t with water depth, segiment iype ov
Sydrocaroons.

CONCLUSIONS: MDS most sensitive in discriminating siies. and reiates
tp sollution levels. Oiversity nct orderad in the same way. Stations with
highest pollution Taveis not the most 'stressed’.
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Fig.

14.5

SPECIES RANK

ABC curves for Hamilton Harbour macrobenthos (sum of 4 replicates

at each station); A = abundance, B = biomass
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A) 2-D MDS configuration for macrofauna standardised rool-
transformed abundance. B-F) same configuration with symbols
representing values of environmental variables superimposed: B)
grain size, C) water depth, D) sediment Pb concentration, E) TBT
in water, F) sediment PAH
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Example 3: Reef corals at South Tikus Island, Indonesia, before and
after 1982-3 E1 Niiio.

MAP OF SITES: Not available. Ten sets of 3 x 10 m transects across
reef-flat in each year.

UNIVARIATE INDICES: See Fig. 8.2. Immediate post E1 Nifio decline in
number of species and H’, slight recovery in 1984 but no significant change
after this. No significant changes in J’.

GRAPHICAL DISTRIBUTIONAL PLOTS: From 1984 onwards, k-dominance curves
lie entirely above that of 1981, indicating no apparent recovery. With
ANOSIM, few significant differences between years detectable after 1984.

CUMULATIVE % DOMINANCE

7 1%

-Jominancs curves for totals of all ten raplicatas in sacn v
i=1881, 7=1382 =tc

T
[+1]
h:



]

o

1L

(1]
]

MULTIVARIATE ANALYSES:
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Fig. 14.8 MDS for coral species percentage cover data for South Pari
Island. 1=1981, 3=1983 etc

£1 Nifio lecation shift between 1981 and 1983, with gradual recovery
towards the 1981 condition until 1985, then a slight move away again in 1987
significantly differant.

and 1988. ANOSIM shows all pairs of years to be s

SONCLUSTONS: A1 methods demonstrate the dramanic nest E1 e
decline in spscies, though the muliijvarizte tachnicues wera saen to De mors
sensitive in monitoring the recovery phas2 in later years,
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Example 4: Fish communities from mined and non-mined reef tops in the
Maldives.

MAP OF SITES: Not available.

UNIVARIATE INDICES: AMOVA shows no significant effect of mining on
H or J'.

GRAPHICAL/DISTRIBUTIONAL PLOTS. k-dominance curves for individual
replicates given in Fig. 14.9. ANOSIM shows no significant difference between

mined and non-mined sites.
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Fig. 14.3 Replicate k-dominance curves Tor [risn communities
‘tap) and non-minead (poTiom} r2sef-iops



MULTIVARIATE ANALYSES:
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Fig. 14.10 MDS of fish species abundance data from mined (M) and un-mined
{U) reef-tops

{lear separation of mined and non-mined sites, which ANOSIM shows to
be significant (though test is unnecessary in such a clear-cut case).

CONCLUSIONS: Clear differsnce in communify composition due to mining
activity revealed by muitivariate methods, but not detected at all by
upivariate or graphical/disiributicnal technigues.
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Example 5: Macro- and meiabenthos from different seaweed species on
the Isles of Scilly.

MAP OF SITES:
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UNIVARIATE INDICES: Note that meiobenthos and macrobenthos show
different trends, and for all indices many pairs of weeds are noi
significantly different from each other.
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Species richness {left}, Shannon diversity {(middle]} and evenness
{right) for meicfauna (top} and macrofauna {bettom), with 95%
confidence intervals. Ch = Chondrus, La = Laurencia, Lo =
Lomantaria, C1 = Cladophora, Po = Polysiphonia
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GRAPHICAL/DISTRIBUTIONAL PLOTS: k-dominance curves for meiofauna show
only Polysiphonia with a distinctly Jower curve than the other species. For
macrofauna, curves not clearly distinguishable from each other.

meiofauna ’ Coma sl Ive & mac~afauna
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Fig. 14.13 %-dominance curves for meiofauna (left) and macrofauna (right).
1 = Chondrus, 2 = Laurencia, 3 = Lomentaria, 4 = Cladophora, 5
= Polysiphonia :

MULTIVARIATE AMNALYSES: See Fig. 13.7. Two-way ANOSIM (weed
species/sites) shows all weed species significantly different for both
meiofauna and macrofauna. Note similarity of macrofauna and meiofauna
configurations.

CONCLUSIONS: Multivariate methods more sensitive than univariate or
graphical/distributicnal metheds for discriminating between weed species.
Univariata and graphical/distributiaonal methods give different results for
macrobenthos and meiobenthos, whereas for the muitivariata methods the results
are similar for bdeth.



Example 6: Meiobenthos (nematodes and copepods) from the Tamar
estuary, S.W. England {Austen & Warwick, 1989).

MAP OF SITES:
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g. 14.14 Hap of Tamar estuary showing locations of 10 intertidal mud-7iat
sites

UNIVARIATE INDICES: Not determined.
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GRAPHICAL/DISTRIBUTIONAL PLOTS: k-dominance curves for nematodes and
copepods do not show similar sequence. For nematodes, sequence does not
correspond to the salinity gradient, but for the copepods the agreement with
salinity is closer.
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Fig. 14.15 Kk-dominance curves for amalgamated data from 6 replicate cores
for nematodes (top) and copepods (bottom)
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MULTIVARIATE ANALYSES: Sequence of sites ordered along the salinity
gradient for both nematodes and copepods. ANOSIM shows copepod assemblages
significantly different at all pairs of sites, nematodes at all pairs except
6/7 and 8/9.
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Fig. 14.16 MDS for nematodes (Teft) and copepods {right) for six repiicate
cores at each of 10 stations. Note that, aliowing for the
difference 1in orientation, the configurations are almost
identical

CONCLUSIONS: Multivariate techniques more sensitive in discriminating
sites (many sites indistinguishabie on basis of Xk-dominance curves).
Muliivariate methods give similar patterns for nematodes and coopepods;
graphical/distributional methods give ¢ifferent patterns for the iwo taxa.
Far nematodes, factors other than salinity are more important in determining
diversity protiles, but for copepods salinity correlates weil with diversity.
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Example 7: Meiofauna from Tasmanian sandfiat, influenced by burrowing
and feeding of soldier crabs.

MAP OF SITES:
UNIVARIATE INDICES: See Lecture 12
GRAPHICAL/DISTRIBUTIONAL PLOTS:

MULTIVARIATE ANALYSES:
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undisturbea (aifTerent shapes denote the 7lour 210CKS
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CONCLUSIONS: For nematodes, univariate, g-aphical/distributional and
multivariate methods all distinguish disturbed frem undisturbed sites. For
copepods only the multivariate methods do. Univariate and
graphical/distributional methods indicate different responses for nematodes
and copepods;, multivariate methods indicate a sirilar response.

GENERAL CONCLUSIONS
Three general conclusions emerge from these examples:

1. Similarity between sites based on their univariate or
graphical/distributional properties is usually different from their
clustering in multivariate analyses.

S SPECTES DEPENDENT (multivariate) methods are much more sensitive than
SPECIES INDEPENDENT (univariate and graphical/distributional) methods
in discriminating between sites.

3. In examples where more than one component of the fauna has been
studied, univariate and graphical/distributional methods may give
different results for different components, whereas multivariate
methods tend to give the same results.

The sensitive multivariate methods are only capable of detecting
differances in community compoesition between sites, although these differences
can be correlated with measured Tevels of stressors such as pollutants. Only
the species independent methods of data aralysis can be used to determine
deletericus (stress) responses. There is a need to develop techniques for
determining stress which utilise the full multivariate information contained
in a species/sites matrix.

RECOMMENDATIONS

At prasent, it is important to apply a wide variety of classes of data
analysis, as each will give different “nformaticn and this witl aid
interpretation. Sensitive multivariate methods will give an “early warning’
that commuaity changes are occurring, but indicaticns that these changes are
deletericus are requirsd by environmenial managers, and the la2ss sensitive
species independent methods must be used.
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FURTHER READING

For general texts on multivariate methods, the two books by Everitt
(1978 and 1980) are useful introductions, and Chatfield and Collins (1980) can
be recommended (though requires some knowledge of matrix algebra and
statistical inference). A more detailed, but still approachable, exposition
of MDS is the monograph by Kruskal and Wish (1978). (None of these texts is
written from an ecological viewpoint).

Papers which reflect the approach taken in these lectures include
Field et al. (1982), Warwick (1986), papers from the GEEP Oslo Workshop
Proceedings {Mar.Ecol.Prog.Ser.Vol.46), e.g. Gray et al. (1988), Warwick et
al. (1988), Clarke and Green (1988), and from the GEEP Bermuda Workshop
Proceedings (to appear in J.Exp.Mar.Biol.Ecfol. in July 1990), viz. Clarke
(1990) and Warwick et al. (1990).
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