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Figure 1 Major sub-basins of the Mediterranean Sea

Table 1 Major sub-basins of the Mediterranean Sea

Basin Code Area (10° km?) Bordering countries

Alboran ALB 76 Spain, Morocco, Algeria
North-Western "NEW 252 Spain, France, Monaco, Italy
South-Western SWE 270 Spain, ltaly, Algeria, Tunisia
Tyrrhenian TYR 242 Italy, France, Tunisia

fonian ION 184 Italy, Croatia, Albania

Central CEN 606 Italy, Tunisia, Libya, Malta
Aegean AEG 202 Greece, Turkey
North-Levantine NLE 111 Turkey, Cyprus, Syria, Lebanon
South-Levantine SLE 436 Lebanon, Israel, Egypt, Libya

Table 2 Fluxes of water and nutrients flowing in and out of the Mediterranean Sea from scientific
references::(1) Guerzoni et al. 1999, (2) Boukthir & Barnier 2000, (3) Markaki et al. 2010, (4) Mariotti et al,
2002, (5} Pettenuzzo et al. 2010, (6) Sanchez-Gomez et al. 2011, (7) Ludwig et al. 2010, (8) Dafner, Boscolo &
Bryden 2003, (9) Gémez 2003, (10) Baschek et al. 2001, (11) Huertas et al. 2009, (12} Soto-Navarro et al.
2010, (13) Polat & Tugrul 1995, (14) Stanev & Peneva 2002, (15) Tzali et al. 2010, (16) Krom, Herut &
Mantoura 2004, (17) Zrtebjerg et al. 2001, (18) Zektser & Loaiciga 1993, (19} Kara et al. 2008.

Source Nitrogen (10° tN) Phosphorus (10° tP) Water (km®)

Atmosphere 1140:1335(1,3) 65(1) 825:1485 (2, 4, 5, 6)

River 1285 (7) 126 (7) 340:347 (2,7)

Atlantic -3135:-1080 (8,9) -242:-38(8, 9) 925:1578 (2, 4,10, 11, 12)
Black Sea 120:130 (13, 16)  2(13) 197:311 (14, 15, 19)
Evapotranspiration 2300:2922 (2,4, 5, 6)
Point source 285 (17) 74 (17)

Groundwater 50 (18)



Chapter 1 - Introduction

The Mediterranean Sea covers about 2.5 10° km?, with an average water depth of
about 1.5 km. It is commonly divided in ten sub-basins, which are shown in Figure 1 and
listed in Table 1. Nitrogen, phosphorus and silicon are crucial elements for maintaining
biological productivity in the sea. In the Mediterranean as a whole, concentrations and
stocks of these elements are controlled by the exchange through the Straits of Gibraltar
and Bosphorus, by atmospheric deposition, by river and groundwater discharge, and by
anthropogenic point sources. Nutrient fluxes into and out of the Mediterranean are
strongly controlled by the associated water fluxes. By far the greatest exchange rates are
observed in the Strait of Gibraltar, where nutrient depleted Atlantic surface water enters
the basin and nutrient enriched Mediterranean deep water is exported to the open
ocean. Imbalance between both creates a large nutrient deficit which is mainly
responsible for the oligotrophic character of the Mediterranean Sea. In Error! Reference
source not found., we list the major water and nutrient fluxes into and out of the basin.
River water discharge from land to sea accounts only for one tenth of the total water
input to the Mediterranean Sea which is about 2.5 10° km? yr, Despite this low river
water discharge, rivers account for a large part of nutrients inputs: about 50% for
nitrogen and two third for phosphorus.

The general objective of the work of CEFREM is to develop a database and GIS
based modeling tool for the assessment of nutrient inputs into the Mediterranean Sea
from rivers. Rivers are major pathways for transport of nutrients from terrestrial/
anthropogenic sources to the Sea, and this work is focusing on riverine inputs. River
basins integrate the variety of natural and anthropogenic sources that release nutrients
(i.e. relevant elements that are necessary to maintain biological productivity) to surface
waters, which may successively be transported to the river mouths and hence integrates
the marine realm. It is in this sense that rivers can be considered as diffuse nutrient
sources to the Sea, not in the sense that point sources (such as urban waste water
releases) within the river basins are excluded. At the scale of the entire Mediterranean,
diffuse sources from rivers can be opposed to point sources being direct injections of
nutrients from industries and/ or big cities along the coastlines. As for atmospheric
depositions, these direct nutrient inputs are not considered in the present work.






Chapter 2 - Data availability for freshwater discharge and
nutrient concentrations

Creation of a data base on Mediterranean rivers has already been started in the framework
of a previous collaboration with MEDPOL (UNEP/MAP/MED POL 2003) and further enlarged
via the European integrated research project SESAME (http://www.sesame-ip.eu/). As part
of this present RFP, a new and important effort has been made to update the database

through:
- screening of the recent scientific literature and existing up-to-date databases
- adding of data for sub-catchments of river basins

- adding of information for each basin and sub-catchment on potential controlling
factors of river nutrient fluxes (climate, topography, lithology, land use/land cover
and human activities and infrastructures).

The database we created is hence a mixture from different data sources. Not all of
these data have been released to the public domain; some of them were linked to bilateral
agreement between the data owners and CEFREM (Centre de Formation de Recherche sur
les enVironnements méditerranéens), and their further use by third parties needs
establishment of individual agreements too. One of our aims is therefore to use this data
compilation through reprocessing and statistical analyses (modeling) for the creation of
derivation data sets which could then be properly linked to our GIS on Mediterranean rivers,
freely available to all end-users.

2.1 Scientific literature

Recent water-quality and discharge data series were collected through a screening of
scientific literature in order to compile up-to-date information that has been acquired
through independent research activities. Table 3 lists the corresponding references (not
exhaustive), which are continually updated. Also information and synthesis on factors
potentially controlling the spatial and temporal variation of nutrients and water discharge
- were included in this screening, as well as information on modeling algorithms involving this
information. Scientific studies often only allow a punctual and short time view of riverine
nutrient concentrations and water and material transfer to the sea, but they are generally
more detailed in speciation of different nutrient forms and processes that control their
mobilization. In this sense, they are highly complementary to data which have been
collected through (public) monitoring networks, as they can help for data quality assessment



Table 3 Recent literature studies on riverine nutrient and water discharge in the Mediterranean

region
Data Spatial extend References
Nutrient Local to regional Bouza-Deano et al., 2008 ; Cozzi & Giani, 2011 ; de

concentration

Mediterranean Sea
World

Water Local to regional
discharge

Mediterranean Sea

Wit & Bendoricchio, 2001; Elewa, 2010; Garcia-
Esteves et al., 2007 ; Karageorgis et al., 2003 ; Kocak
et al. 2010 ; Lassaletta et al., 2009 ; Lopez-Moreno et
al 2011; Moran-Tejeda et al., 2011; Moutin et al.,
1998 ; Naldi et al., 2010; Nikolaidis et al., 2007;
Oczkowski & Nixon, 2008 ; Skoulikidis et al., 1998 ;
Skoulikidis 2002, 2009 ; Snoussi et al., 2002

Ludwig et al., 2009, 2010,
Meybeck & Ragu, 1997

Arnell, 1999 ; Bellos et al.,, 2004 ; Cigizoglu et al.,
2004 ; Genev, 2003 ; Giakoumakis & Baloutsos 1997 ;
Huss, 2011 ; Kahya & Kalayci, 2004 ; Kuhn et al., 2011
; Lorenzo-Lacruz et al., 2011 ; Lespinas et al., 2010 ;
Ludwig et al., 2004 ; Meddi & Hubert, 2003 ; Mimides
et al., 2007 ; Oueslati et al., 2011 ; Quintana-Segui et
al., 2011 ; Rees et al., 1997 ; Senatore et a!., 2011;
Shorthouse & Arnell 1997 ; Stahl et al., 2010 ; Touazi
& Laborde, 2004 ; Zanchettin et al., 2008

Boukthir & Barnier, 2000s ; Chenoweth et al., 2011 ;
Cudennec et al., 2007 ; Garcia-Ruiz et al., 2011 ; Gao
& Giorgi, 2008 ; Struglia et al., 2004

. 4|p . g N



and identification of major gaps in these networks. Synthesis studies are the basis for large
scale extrapolations and trend evaluations.

2.2 Public databases
2.2.1 Nutrient concentrations

,The Waterbase-rivers dataset (European Environment Agency,
http://www.eea.europa.eu/data—and—maps/data/waterbasefrivers—8) contains data on
nutrients in water of the WISE-SoE river monitoring stations for all European countries.
These data have been assembled from national monitoring programs; they were supplied to
EEA through political agreement between EU and associated member states. Alone, it allows
a good spatial coverage of nutrient concentrations data in rivers of the Northern
Mediterranean sea from the 2000s. This dataset will be regularly updated (last update in
2012). However, the time range of data series is highly variable between countries and rivers
of each country.

Largest time range of data series by country: Spain (1990-2010), France (1969-2010),
Italy (2000-2010), Slovenia (1990-2010), Croatia (2003-2010), Bosnia and Herzegovina (2000-
2010), Montenegro (2009), Albania (1994-2010), Greece (2000-2007), Turkey (only the Big
Menderes river, 2005-2010), Cyprus (1997-2010).

The OECD Environmental Data Compendium dataset (Organization for Economic Co-
operation . and Development
(http://www.oecd.org/env/environmentalindicatorsmodellingandoutlooks) included time
series for some major rivers of the Mediterranean Sea from 1980 to 2004. It helps
completing series for some rivers of Italy, Greece and one Turkish River.

2.2.2 Water discharge

The “Global Runoff Data Center” datasets (GRDC, http://www.bafg.de) and the
European Water Archive (EWA, http://www.bafg.de) compile time series of river discharge
all over the world for the GRDC dataset and only for European rivers for the EWA dataset.
The time series are updated regularly. There are data series for each country of the
Mediterranean basin except Bosnia and Herzegovina, Lebanon, Libya and Maita. However,
the count of updated data series decline since the 1990s. The data series of water discharge
often do not extend during the 2000s except for France, Slovenia and Cyprus. We haven’t
data since 1990 for Albania, Croatia, Morocco, Tunisia and Turkey.

5|Page






2.3 National and regional datasets
2.3.1 Nutrient concentrations

Data series are completed using national and regional datasets for the Northwestern

Mediterranean basins: Spain (Jucar: http://www.chj.gob.es, Segura:
http://www.chsegura.es, Andalusia : http://www.juntadeandalucia.es, Ebro :
http://www.chebro.es,  Catalonia:  http://aca-web.gencat.cat/sdim/init.do), France

(http://sierm.eaurmc.fr), Northern Italy (Lazio: http://www.arpalazio.net , Tuscany :
http://sira.arpat.toscana.it). There are probably other regional or national datasets but we

failed to find them online.

2.3.2 Water discharge

Data series for water discharge were completed using national and regional datasets
for the Northwestern Mediterranean basin: Spain (http://hercules.cedex.es/), France
(http://www.hydro.eaufrance.fr/), ltaly (up to 1996 : https://193.206.192.243/annali, since
1996 (availability limited to the Northern Italy) : Tuscany : http://www.sir.toscana.it, Lazio :
http://www.idrografico.roma.it/ (up to 1999), Emilia-Romagna : http://www.arpa.emr.it ))
and Slovenia (http://www.arso.gov.si/en/water/data/). '

7|Page
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Chapter 3 - River water discharge

3.1 Delineation of Mediterranean River basins

. For most rivers, basin boundaries can be evaluated from digital elevation
models. HydroSHEDS (Hydrological data and maps based on SHuttle Elevation
Derivatives at multiple Scales) is a mapping product that provides hydrographic
information for regional and global-scale applications. It offers a suite of geo-
referenced data sets including river basins boundaries, drainage directions, and flow
accumulations (Lehner, Liermann & Revenga 2011). HydroSHEDS is based on high-
resolution elevation data obtained during a Space Shuttle flight for NASA's Shuttle
Radar Topography Mission (SRTM). In our work, we used the basins boundaries and
corrected digital elevation model layers in a 15 arc-second resolution, which is
equivalent to a 0.15 km? cell area for mid-latitude. We adjusted the basins boundaries
and hydrographic network through comparison with other sources, especially in karst
and/ or particularly flat areas. For this, we used CCM River and Catchment Database
(Vogt 2007) and the European Water Archive for Europe, and scientific references for
the whole Mediterranean drainage basin (Bonacci 1999; Bonaé(:i, Juki¢ & Ljubenkov
2006; Bonacci & Andric 2008). As most data on other drainage basin characteristics are
not available at such accurate resolution, we upscaled these basins boundaries at a 5
by 5 minutes resolution. Boundaries are used to constrain the drainage routing grid.
These boundaries are the reference delineations for all data extractions out of the data
layers considered in this study. The whole Mediterranean drainage area is almost
4.7 10° km? (Figure 2). In previous studies, this area range from 3.5 10° km? (Strobl et
al. 2009) and 5.6 10° km? (Ludwig et al. 2009). This large range is partly due differences
in the spatial resolution of digital elevation models and basin delineations in desert
regions of the Nile and Northeastern Africa. As no signiﬁcant runoff or nutrient
emissions occur in these desert areas, this uncertainty does not have a major effect on
nutrient and water budgeting. The Nile (Table 4), the largest African River, covers
roughly 3.0 10° km? which is one-tenth the area of Africa and 63% of the whole
Mediterranean drainage basin. Surrounded by numerous mountain chains (e.g. Atlas,
Apennine, Alps, Dinarids, Hellenids, Taurus Mountains), the other Mediterranean River
basins are confined to a relative small coastal fringe with steep terrains (Figure 2). This
can be seen Figure 3 when ranking the Mediterranean rivers according to basin Size,
showing that about half of the Mediterranean drainage basin is formed by river basins -
smaller than 15 000 km? (not counting the Nile river).
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Table 4 Ten largest river basins flowing to the Mediterranean Sea and countries covered by

them (bold: countries of the river mouth)

River name Drainage area Countries
(10° km?)
Nile © 2.988 Egypt, Ethiopia, Sudan, South Sudan,
Rwanda, Tanzania, Uganda, Burundi,
D.R..Congo, Eritrea, Kenya
Rhone 0.098 France, Swiss
Ebro 0.086 Spain
Po 0.074 Italia
Moulouya 0.055 Morocco
Meric (Evros) 0.053 Greece, Turkey, Bulgaria
Chelif 0.045 Algeria
Biylk Menderes 0.026 Turkey
Axios (Vardar) 0.025 Greece, Macedonia
Orontes (Asi) 0.024 Turkey, Lebanon, Syria
1.0
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Figure 3 Cumulative distribution of drainage area for Mediterranean River basins (not

counting the Nile River)
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3.2 Spatial variation of river water discharge

Interannual river water discharge and runoff (i.e. water discharge per unit area) is
compiled by river in the Annexes

Annexe 1. On average, the rivers for which we found discharge series cover about 85% of
the Mediterranean drainage basin and 60% excluding the Nile (Figure 4). Most of lacking
data are located in North Africa where runoff is assumed to be closed to zero. Basins, where
runoff data are available, catch 90% of total precipitation over the Mediterranean drainage
basin (71% excluding the Nile). Using the Pike formulation to estimate lacking data (see
3.3.1), we may estimate than our data cover 83% of the total water discharge (with or
without the Nile). Largest freshwater discharge is provided by the Rhone with 52.4 km? yr™
in the Northwestern Mediterranean Sea. The second largest freshwater discharge is
provided by the Po to the Adriatic Sea (45.3 km® yr?). Both rivers of the Northern
Mediterranean Sea provide about 25% of the total continental freshwater discharge. Two
other rivers discharge more than 10 km® yr: Buna-Drini (21.4 km® yr'®) and Nile (about 15
km® yr'). Among the fourteen rivers discharging more than 5 km® yr™?, six have their mouth
along the Adriatic Sea (Po, Buna-Drini, Adige, Soca, Neretva and Vjosa). Others rivers
discharging more than 5 km® yr are in Spain (Ebro), Italy (Tevere) and Turkey (Seyhan,
Ceyhan, Meric (mouth on the Greece/Turkey boundary) and Susurluk). The size of the
drainage basin is the first factor of the spatial variability in freshwater discharge (Figure 5).
Thus, the flow of the Nile, the Rhone, the Po, and Ebro are among the highest. Despite this
constraint, we observe a strong heterogeneity of freshwater discharge between rivers
irrespective of the drainage area. For example, the Nile freshwater discharge is lower than
that of Buna-Drini while its drainage area is more than 100 times larger. Expressed per unit
of area, the river runoff roughly decreases from Northern to Southern Mediterranean Sea.
Highest runoffs are gauged in karstic area of the Taurus region (Kopru, Manavgat) and the
Eastern Adriatic Sea (more than 1000 mm yr” for Buna-Drini, Neretva, Soca, Trebisjnica,
Mati and Arachtos). For the Manavgat, the calculated runoff reaches more than 3000 mm yr’
! This strong discharge (higher than precipitation depth on the topographical drainage area) ,
is probably due to external input of groundwater from farther north endorheic areas. For
most African and Southern Spanish rivers, runoff is lower than 25 mm yr. The Nile,
Moulouya and Chelif, runoff are 5, 8 and 13 mm yr™. For the Po and Rhone, it reaches 646
and 548 mm yr™. '
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3.3 Main drivers of spatial change in riverine runoff
3.3.1 Climate

A major peculiarity of Mediterranean rivers is related to climatic constraints.
Probably the most important criterion in defining the Mediterranean climate type (Peel,
Finlayson & McMahon 2007) is related to the strong seasonal rainfall contrast between the
summer and winter (autumn) seasons. However, spatial coverage of Mediterranean
drainage area is not the same that Mediterranean climate and the drainage basin includes
some important variations. The Mediterranean clir_nate covers the drainage basins of
Southern Italy, Southern Greece, Middle East and Maghreb. In Spain, climate is dryer and is
classified as arid. From the Northern Spain to Northern Adriatic Sea, there are no dry
seasons and temperatures are colder. The peculiarity of the Nile is the Northern to Southern
climatic gradient with an equatorial climate upstream and desert climate at his middle
course and near the mouth.

Using 1901-2009 data from CRU 3.10.1 (Mitchell & Jones 2005), total precipitation
and potential evapotranspiration volumes over the Mediterranean drainage basin are 3.0
10° km® yr* and 7.0 10° km® yr. Average precipitation (Figure 6) and potential
evapotranspiration depth were 630 mm yr™* and 1487 mm yrt, Precipitation depth ranges
from less than 49 mm yr' to more than 1639 mm yrt. Largest precipitation depths were
recorded at the Northern and Eastern Adriatic Sea and in the Rhone basin. Lowest
precipitation depths were recorded at the Southern and Southeastern Mediterranean Sea
(excluding the Nile). For the five Iargest basins, the average precipitation depths are 650,
1049, 615, 1233 and 353 mm yrl. Potential evapotranspiration depth ranges from 485 to
1867 mm yr'l. Largest potential evapotranspiration depth were calculated were precipitation
is lowest and in the Nile basin. Lowest potential evapotranspiration depths were calculated
for the Northern Adriatic Sea and for the Rhone. For the five largest basins, the average
potential evapotranspiration depth is 1702, 798, 1027, 705 and 1419 mm yrt.

While difference in drainage area explains a large part of the spatial variation in
freshwater discharge, precipitation and temperature are the main drivers of spatial variation
in runoff, i.e. freshwater discharge per unit of drainage area. Precipitations generate runoff
from soils to rivers and temperature influence the potential evapotranspiration from soil to
atmosphere. According to Ludwig et al. (2009), quantification of the combined effect of
precipitation (P) and temperature on Mediterranean river runoff (Ro) can be estimated by

“the approach of Pike (1964). :
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1
2
(1 +(s—s‘.‘93‘o-—m) )

ABT s the annual mean of monthly temperature with negative values set to 0.

0.5

The Pike formulation allows a good estimation for major rivers (Nile, Ebro, Rhone,
and Po). However, we observe a widespread underestimation for the rivers of the Eastern
tonian and Adriatic Seas and the Southern Italy and Turkey. This underestimation may be
due to an underestimation of precipitation or to an overestimation of evapotranspiration. In
contrast, the modeled flow is greater than the measured flow for most South Mediterranean
Rivers and Spanish Rivers. This overestimation can be partly explained by the impact of

water withdrawals, including irrigation, on the observed discharge which is not taken into
account in this formulation.
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3.3.2 Water use

Large amounts of water are needed for agriculture, cities and industry. Especially the
agricultural productivity of Mediterranean countries is largely dependent on water
availability for crops. Irrigation existed for millennia in these regions and has been widely
developed over the past decades with cultivated areas expansion and intensification. In
Spain, 70% of fresh-water demand is devoted to irrigation (Lorite, Mateos & Fereres 2004).
Irrigation is responsible for the highest water consumption due to an increased
evapotranspiration rate unlike most of drinking water and industrial water returned to
rivers. About 99% of water used in agriculture is lost by crops.as evapotranspiration (Rana &
Katerji 2000). The “Land Use and Land Cover” grid of the Harmonized World Soil Database
map the irrigated and rainfed field at the world scale (Fischer et al 2008). We used these
grids to compute irrigated area for each Mediterranean basin. The large basins with largest
irrigation rate (Figure 9) are Acheloos (29%), Pinios (24%), Po (22%), Orontes (15%) and
Ceyhan (14%). For the Ebro, Rhone and Nile, irrigated areas cover 9%, 4% and 2% of the
basin area. Despite a low value for the Nile, irrigated area cover most of the Nile delta.
Under the assumption that actual evapotranspiration in irrigated crops is equivalent to the
potential evapotranspiration, we can estimate the total evapotranspiration taking into
account irrigation effect using this next formulation:

A
R =R0~—f4’2(ETP—EO)

For the Nile and other Northeastern African basins (Figure 10), the water requirement
within irrigated area is stronger than the natural runoff. In Northwestern Africa, this water
requirements range from 30 to 100% in Morocco and Eastern Algeria and reach 100% of the
natural runoff in Tunisia. For the Orontes, this water accounts for 79% of its natural runoff.
Despite a very large irrigated area and as the water deficit is relatively low in the Po basin,
the impact of irrigation on the water discharge is relatively low compared to the Southern
Mediterranean basins where the irrigated area is lower but the water deficit much stronger.
For the Nile, the flux of evaporated water within the delta, since the Aswan Dam
construction in 1965, is about 20 km? yr'l, i.e. about 60% of the natural runoff at the delta
head (Mikhailova 2001).
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3.4 Past evolution of freshwater discharge

We performed trend analyses for water discharge data series using the Yue and Pilon
method (Yue et al. 2002). The trend slope is estimated with the Theil-Sen approach, if almost
equal to zero, then it’s not necessary to conduct the trend analysis. If it differs from zero,
then it is assumed to be linear and the data is detrended by the slope and the autoregressive
model of order 1 is computed for the detrended series. This is referred to as the Trend Free
Pre-whitening procedure. The Mann-Kendall test is applied to the blended series to assess
the significance of the trend. Only data series without gap and longer than 20 years was used
to compute trend.

Most of the Mediterranean rivers in our compilation of discharge series reveal a
strong negative trend (Figure 11). In Maghreb, a significant decrease is observed for the
Moulouya (Morocco, -82%) and Medjerda (Algeria, -39%). For the Nile, upstream of Egypt
boundary, a 30% d‘ecrease was detected between 1960 and 1995. The strongest decrease is
observed in the Segura with more than -99% from 1960 to 2009. For the Turia, this decrease
reaches 86%. For all Spanish rivers, the decrease is more than 50%. In Greece, significant
decreases are calculated for the Nestos, Meric, Strymon and Acheloos and ranged from 65%
for Nestos between 1966 and 1995 and 29% for Strymon between 1968 and 1999. For the
other Greek rivers, a non-significant but negativé slope is computed (Axios and Aliakmon). In
Southern Italy, significant runoff decreases are observed for the Ofanto (-63% from 1960 to
1996) and Tevere (-45% from 1960 to 2008). In the Eastern Adriatic Sea, negative trend was
detected for the Soca (Slovenia, -29% from 1960 to 1998), Krka (Croatia, -26% from 1960 to
1998), Shkumbini (Albania, -41% from 1960 to 1990) and Osumi (Albania, -38% from 1960 to
1989). For Northern ltaly (Adige, Po, Arno) and the Rhone river, no significant trend was
detected in the time series. The only positive value, but non-significant, was computed for
the Imera Mediridionale in Sicilia. In Annexe 1, river runoff for the last 20 years recorded is
lower than value over whole time series for 88% of rivers. Expressed in water depth (Figure
12), the highest significant decreases are computed for the Acheloos (-20 mm yrl),
Shkumbini (-15 mm yr'), Nestos (-9mm yr) and Krka (-6 mm yr™). For the Segura, Turia and
Moulouya, where the relative decrease is maximal, the absolute decrease is lower than 2
mm yr™*. This general runoff decrease for Mediterranean rivers was also shown for the whole
twentieth century (Milly, Dunne & Vecchia 2005).
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3.5 Main drivers of freshwater discharge evolution

3.5.1 Climate

As for spatial variability, interannual change in freshwater discharge is mainly
controlled by precipitation change. Precipitation is highly variable from year to year but
long-term trends can be observed. Philandras et dl. (2011) showed that statistically
significant negative trends of the annual precipitation totals exist in the majority of
Mediterranean regions during the period 1901-2009, with an exception of northern Africa,
southern Italy where slight positive trends (not statistically significant) appear. For the 1960-
2009 period, only one significant trend (Ebro) was calculated among the twenty largest
Mediterranean basins (Figure 13). However, the slope, non significant, is negative for most
of the Mediterranean Rivers except Middle Northern Africa and Southern Italy. Significant
decreasing trends are computed for many rivers of the Eastern Adriatic and lonian Seas,
central Italy, Northern Spain and Eastern Levantine Sea.

For Ebro, rainfall decreased by 104 mm in the last 50 years (15% of the interannual
average centered on 1960). Decreases greater than 300 mm are calculated for the Serchio
and Reno in ltaly. By comparing the slope of changes in precipitation and flow rates (Figure
14), we note that for most runoff decreases, we also observe a decrease in precipitation.

200
Nile Segura Zér, s
0 ~ Mouiouya = [S) edjerda
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PreCIpltatlon trend (mm)
Figure 14 Runoff and prec:p:tatlon trend between 1960 and 2009 in Medlterranean Rivers. Blue
dot: signicant trend for precipitation, green dot: significant trend for runoff, red dot: significant
trend for both precipitation and runoff, grey dot: non-s:gmf:cant trends. Only water discharge data
series without gap and longer than 20 years was used to compute trend
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3.6 Budget and future scenarios for riverine runoff

To assess the actual water discharge by rivers in the Mediterranean Sea, we used the
past 20 years average of annual data series or interannual average when data series are not
available. For other rivers, we used the Pike formulation (Figure 16). Actual water discharge
by rivers is about 402 km® yr. This estimation is closed to the previous assessment of
Margat & Treyer (2004), with 396 km® yr? (not accounting for groundwater discharge).
Other values from recent studies are lower and range from 320 (excluding the Nile) to 350
km® yr™* (Boukthir & Barnier 2000s; Ludwig et al. 2009; Bouraoui, Grizzetti & Aloe 2010).
Freshwater discharge to the Adriatic Sea reaches 155 km?® yr‘l, i.e. 38.5% of total freshwater
discharge (Table 5). The Northwestern Mediterranean Sea, Aegean Sea and Northern
Levantine Sea receive 85, 50 and 45 km® yr™. Sum of freshwater provided by the Northern
Mediterranean Rivers covers 93% of the total freshwater discharge. With about 15 km?® yr?,
The Nile discharges 59% of the total freshwater provided by Southern Mediterranean Rivers.

Climatic scenarios used to assess freshwater discharge in 2030s were provided by the -

IMAGE 2.4 model of the Netherland Environmental Assessment Agency (MNP, 2006). One of
the peculiarities of the IMAGE model is that the future climate is directly linked to the
socioeconomic development via the release of greenhouse gases to the atmosphere. This
implies that climatic scenarios associated with the four socioeconomic scenarios (see 4.6.1)

“are not the same. For 2030s, we calculate a decrease of 11.6 to 12.0% depending on the
scenario used, i.e. a total freshwater discharge between 354 and 360 km® yr™. Other studies
show that this decrease is expected to continue during the next decades (Mariotti et al.
2008; Elguindi et al. 200'9). However, these scenarios do not take account of irrigation and
reservoir capacity change in the next decades. Due to the demographic growth and
intensification of agriculture projected for the Eastern and Southern Mediterranean basins,
the decline of water discharge should be stronger than these calculated values. ’

Table 5 Average actual freshwater fluxes (km® yr?) to the Mediterranean Sea and 2030s scenarios

Sea sub-basin 2000s 2030sTG 2030s AM 2030s GO 2030s OS

NWE 85 79 78 78 79
TYR 20 18 18 17 18
ION 20 18 17 17 18
ADR 155 144 143 142 143
AEG 50 41 40 40 41
NLE 45 36 35 35 36
SLE 16 16 16 16 16
CEN 2 1 1 1 1
SWE 6" 5 5 5 5
ALB 4 3 3 3 3
TOTAL 402 360 356 354 358
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Chapter 4 - Nutrient concentrations and fluxes

4.1 Forms and concentrations of nitrogen and phosphorus in rivers

Various organic and inorganic compounds have to be taken into account nitrogen and
phosphorus fluxes by rivers. Inorganic nitrogen compounds include nitrate (NO3), ammonia
(NH,) and nitrite (NO,). Wastewaters are the main source for NH; and NO,. In agricultural
area, fertilizer and manure excess is the main source for NOs;. Other sources of NO; are
biological fixation and atmospheric deposition. Nitrite concentrations are, in most of case,
very low beside other inorganic compounds and may be omitted in the nitrogen budget.
From collected data at the basin scale and weighting the nutrient concentration of each
basin by their water discharge, the average NO;, NH, and NO, concentrations were 1.91
mgN L*, 0.21 mgN L™ and 0.05 mgN L™, i.e. an average dissolved inorganic nitrogen (DIN)
concentration of 2.17 mgN L™ (Figure 17). For dissolved organic nitrogen (DON), the average
concentration is 0.92 mgN L7, i.e. 25% of total dissolved nitrogen (TDN) concentration.
Lacking data for other nitrogen compounds than NOs, we may estimate the DIN and TDN
concentrations from NO3 concentration. Indeed, in most cases, NOs is the dominant nitrogen
form and his concentration covaries in space with other nitrogen compounds. In some rivers,
concentrations of NH; and DON may be unusually strong compared to NOs. This indicates
strong wastewater emission closed to the river mouth and a relatively low water discharge.
TDN or DIN concentrations may be estimated from NO; concentration using the following
equations:

Cpiv = 1.16. Cyp3 (R%=0.91, n=102)

CTDN =1.32. CN03 +0.13 (R2=0.79, n=51)

Particulate phosphorus (PP) accounts for a high fraction of phosphorus fluxes in rivers
because of strong affinity between orthophosphate (majority dissolved from, PO, and
particulates. At a global scale, dissolved phosphorus only constitutes about 10% of the
phosphorus fluxes by rivers (Meybeck 1982). For Mediterranean Rivers, average dissolved
inorganic phosphorus (DIP) concentration is 0.16 mgP L and 0.10 mgP L when
concentrations are weighted by water discharge. There are numerous data for total
phosphorus (TP). However, the number of measurement and sampling strategy are not
suitable for evaluating concentrations or fluxes on an annual basis. In many cases, TP
concentrations are measured out of flood periods while TP concentrations are much
stronger during floods. From collected data, average TP concentration is 0.21 mgP L™ and
0.10 mgP L™ when concentrations are weighted by water discharge. In fact, average
concentrations should be greater and it is likely that the average concentrations of TP
measured out during floods are rather representative for total dissolved phosphorus (TDP)
concentrations (i.e. dissolved inorganic and organic phosphorus). We note a strong relation
between TP and DIP concentrations: ’

Crpp = 1.21 - Cp;p + 0.06 (R2=0.82, n=87)
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4.2 Spatial variation of nutrient concentrations and fluxes
4.2.1 Nitrogen

4.2.1.1 Nitrogen concentration

Lowest NO3 concentrations (Figure 18) were found in rivers of the Eastearn Adriatic
Sea with most values lower than 0.5 mgN L™ and miminum values lower than 0.2 mgN L™ at
the river mouth of Trebisjnica (Bosnia and Herzegovina), Mati (Albania) and Licka (Croatia).
Fairly low values were also observed at the Eastern lonian Sea and Southern Turkey
(excluding Orontes). In contrast, Orontes has the strongest concentration of NO; with 12.7
mgN L™, Strong NO; concentrations were also recorded in Spanish rivers, especially in the
Southern basins, and in the Maghreb. Values were often greater than 4 mgN L™ (Segura,
Jucar, Turia, Vinalopo, Tafna, Mazafran and Chelif). In Italia, values greater than 3 mgN L*
were found in southern small coastal basins (Fortore, Metauro, Sinni, Marta, Trigno), in
Sicilia (Simeto, Imera) and Sardinia (Flummini Mannu, Cedrino). For the Rhone, Ebro and Po,
average NOj concentrations were respectively 1.5, 2.5 and 2.4 mgN L™. Most of the Nile
freshwater (15 km®, Nixon 2003) is discharged to the sea by the drainage network flowing to
the coastal lagoons (13.6 km®, (Oczkowski et al. 2008)). The average TDN concentration in
drainage water is 14.5 mgN L™ (Khalil, Ouarda & St-Hilaire 2011) with values ranged from 6.8
to 25.3 mgN L™. Average NO; concentration in drainage water is between 4.9 to 10.9 mgN L™
for six categories of drainage water closed to the coastal line (Shaban et al. 2010). Weighting
these NO3z concentrations by the respective area covered by these six categories, the
“average NOs concentration in drainage water is 7 mgN L. We could deduce an average
concentration of Kjeldah! nitrogen (NH; and DON) of 7.5 mgN L™

" For NH4 (Figurel19), lowest concentrations were also found in the Eastern Adriatic Sea
with less than 0.02 mgN L™ in all Croatian rivers (Cetina, Licka, Mirna, Gacka and Krka).
Values lowers than 0.10 mgN L™ were recorded at the Northern Adriatic Sea, in France, Spain
and, more locally, in Western Greece, Southern Italia and Turkey. Greatest NH,
concentrations were measured in small basins including a large city closed to the river
mouth: 11.6 mgN L in Besos closed to Barcelona and 5.9 mgN L™ in Regi Lagni closed to
Naples. Concentrations greater than 0.5 mgN L™ were found in most Maghreb rivers, around
the Aegean Sea (including the largest basin, Meric), at the Southern Italia (including the two
largest basins: Tevere and Arno) and in Spain (as Segura). For the Rhone, Ebro and Po, NH,
concentrations were 0.07, 0.07 and 0.09 mgN L™. We have no measured values for the Nile.
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Regarding DON (Figure 21), data coverage is limited to Western Mediterranean Sea. -
As other nitrogen forms, lowest values were observed at the Eastern Adriatic Sea with less
than 0.25 mgN L™. Strongest values were recorded, as NH,, in Besos and Regi Lagni with,
respectively, 5.3 and 7.5 mgN L™ In Southern Spain, concentrations higher than 1 mgN L-1
‘were recorded in Guadalhorce, Almanzora and Vinalopo. In Northern lItalia, Arno and Po
have strong DON content with 1.9 and 2.0 mgN L. In Ebro and Rhone, organic nitrogen
concentrations were 0.47 and 0.35 mgN L™
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4.2.1.2 Nitrogen fluxes

Strongest river fluxes of NO3 (Figure 22) are provided by the four largest basins with
106 10%, 105 10° 78 10° and 21 10° tN yr™ for the Nile, Po, Rhone and Ebro. Expressed as
specific fluxes, among the thirteen basins with a flux stronger than 1000 kgN km? yr?,
twelve are Italian basins. More than 3000 kgN km™ yr? is found for the rivers Soca and
Livenza (Northern Adriatic Sea). Excluding some small coastal basins, fluxes are always
greater than 500 kgN km™ yr in Italian rivers. NO; flux of the Rhone is also elevated with
820 kgN km™ yr. Other fluxes greater than 500 kgN km™ yr are found in rivers of the
Eastern Adriatic and lonian Seas (Thyamis, Alfeios, Sperchios, Erzeni, Mirna) and of the
Southwestern Turkey (Seyhan, Ceyhan, Orontes). Lowest fluxes are measured on the South
Mediterranean Rivers, Southern Spain, South and Western Turkey with, for most rivers, less
than 100 kgN km2 yr™.

For NHy (Figure 23), greatest fluxes are not provided by largest basins. Greatest NH,
flux is provided by Drini (Southern Adriatic Sea) with 8.1 10° tN yr. Then, respectively, the
next important fluxes are 4.8 10% 4.1 10% 4.0 10% and 3.9 10° tN yr'1 for Kiiciik Menderes,
Po, Tevere and Meric. In Rhone and Ebro, NH, fluxes are 3.7 10° and 0.6 10° tN yr'l. Per unit
area, fluxes higher than 200 kgN km™ yr? were found in ltalia (Tevere, Arno, Sele, Magra,
Crati, Fortore and Serchio). Other values higher than 200 kgN km™ yr™* were found in Tét

(France), West Kebir (Algeria), and Kiigik Menderes (Turkey). Greatest NH, flux is observed - -

in the Besos with more than 1500 kgN km™ yr. Around the Aegean Sea, flux is higher than
100 kgN km™ yr in Pinios, Acheloos (Greece) and Gediz (Turkey). In Southeastern Turkey,
NH, fluxes are about 100 kgN km™ yr™ (Seyhan, Ceyhan, Berdan). Lowest fluxes were
calculated for Western Maghreb and Spain with, for most rivers, less than 10 kgN km? yr™.

Five rivers discharge more than 1.0 10° tN yr'1 of NO; (Figure 24): Rhone, Po, Meric,
Seyhan and Tevere. Per unit area, maximum values were calculated at the Eastern lonian Sea
with more than 100 kgN km™ yr? in Thyamis, Alfeios (Greece) and Shkumbini (Albania).
fluxes for most other rivers of the Eastern lonian Sea were stronger than 20 kgN km™ yrt In
the Besos, flux is also stronger than 100 kgN km™ yr. Values stronger than 20 kgN km2 yr™
were found for numerous Italian rivers (Tevere, Bacchiglione, Volturno, Sele, Ofanto,
Livenza, Magra, Serchio, Sangro, Tronto, Trigno). For Seyhan and Ceyhan (Southeastern
Turkey), NO, flux is also strong. Around the Aegean Sea, values range between 10 and 20
kgN km™ yr'l. Minimal values are found in the Northeastern Adriatic Sea, Spain, Maghreb
and Southern Turkey with less than 5 kgN km™ yr’* for most rivers. Fluxes for Po, Rhone, Ebro
and Meric are 19, 11, 3 and 20 kgN km? yr™.
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For DON (Figure 25), fluxes of Rhéne, Po and Ebro are 24.6 10°, 90.1 10° and 3.0 10°
tN yr. Strongest fluxes per unit area are calculated in the Northern Adriatic Sea with 1268
kgN km™ yr™ in Po and 1202 kgN km™ yr in Livenza. In Spain, excluding Besos where flux
reaches 258 kgN km™ yr™, values are lower than 100 kgN km2yr™.
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4.2.2 Phosphorus

4.2.2.1 Phosphorus concentrations

DIP concentrations range from 0.01 mgP L™ to 1.40 mgP L (Figure 26). Minima were
found in the rivers of the Eastern Adriatic and Aegean Seas with less than 0.05 mgP L™ pour
for most rivers. In France, concentrations are also low with in average 0.05 mgP L™. Around
the Aegean Sea, concentrations are often stronger than 0.20 mgP L™ and reach 0.54 mgP L™
for Axios, 0.48 mgP L for Meric, 0.34 mgP L for Gediz and 1.34 mgP L™ for Kaeuk
Menderes. Strong concentrations were measured in Maghreb  with 0.80 mgP L in
Moulouya and 0.49 mgP L™ in Kebir-Rhumel. Some other levels greater than 0.30 mgp L™
were found in Asi (Turkey), Besos (Spain), Llobregat (Spain), Regi Lagni and Serchio (Kaly). In
Rhone, Po and Ebro, concentrations are 0.05, 0.07 and 0.06 mgP L™,

For TP (Figure 27), concentrations range from less than 0.01 mgP L™ and 1.89 mgP L™
Most of concentrations stronger than 0.40 mgP L™ are around Aegean Sea (Meric, Axios,
Gediz, Strymon, Aliakmon, Kiictik Menderes, Loudias and Bakir). Other rivers with so strong
concentrations are Besos (maximum concentratiori), Llobregat and Guadalhorce in Spain,
Regi Lagni and Ofanto in ltaly, and Seyhan in Turkey. In Italia, TP concentrations are often
stronger than 0.10 mgP L™ and stronger than 0.20 mgP L™ for Po, Tevere and Arno. In
Northern Spain and France, concentrations are lower than 0.10 mgP L™ for most rivers, with
0.07 mgP L™ for Ebro and 0.08 mgP L for Rhane.
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4.2.2.2 Phosphorus fluxes

The highest DIP flux (Figure 28) is calculated for the Meric and Po with more than
3 10° tP yr™. Four other rivers have a DIP flux stronger than 1 10° tP yr: the Rhéne, Axios,
Seyhan and Kigiik Menderes. For the Ebro, the flux is only 0.5 10° tP yr. Per unit area,
highest values are observed in Italy, around the Aegean Sea, in the Southeastern Turkey and
Northeastern Maghreb. Values are higher than 50 kgP km? yr® for the Axios, Meric,
Strymon, Pinios and Thyamis in Greece, for the Kiigiik Menderes and Seyhan in Turkey, for
the Arno, Bacchiglione, Serchio, Magra and Marta in Italy, for the West Kebir in Algeria and
for the Besos in Spain. In the Rhone, Po and Ebro, flux is respectively 27, 45 and 6 kgP km™ -
yr''. Minimales values are observed in the Southeastern Spain and Eastern Adriatic Sea with
less than 5 kgP km? yr.

Strongest TP fluxes are measured in the Po, Meric and Rhone with 9.1 103, 5.1 and
4.2 tP yr* (Figure 28). Fluxes higher than 1 tP yr are observed in the Axios, Aliakmon and
Strymon in Greece, the Ceyhan, Seyhan and Kiiciik Menderes in Turkey, the Buna-Drini in
Albania and the Tevere in Italy. Per unit area, we observe the same spatial change than for
DIP with value ranged from 1 (Guadalfeo, Spain) to 374 kgP km™ yrt (Kiiciik Menderes,
Turkey). For the Rhone, Ebro, Po and Meric, this flux is 44, 8, 127 and 96 kgP km?2yr™,
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4.3Main drivers of spatial variations in nutrient concentrations and
fluxes '

4.3.1 Nutrient emissions

4.3.1.1 Data sources

Nutrient balance data was provided by the IMAGE 2.4 model of the Netheriand
Environmental Assessment Agency (MNP, 2008). Point sources of nutrient were calculated
using the conceptual relationship of Van Drecht et dl. (2009) between per capita human N
and P emission from human excreta and other household and industrial wastes, and per
capita income. The amount of phosphorus or nitrogen discharged to surface water is
estimated using removal of nutrient in wastewater treatment (expressed as a fraction of
nutrient effluent to treatment plants) and the fraction of population connected to sewage
systems. Non-point nutrient balance includes nutrient inputs and outputs for a given area of
land. Nutrient inputs include application of synthetic fertilizer and animal manure for both
phosphorus and nitrogen by crop category. It also includes biological fixation and
atmospheric deposition only for nitrogen. Nutrient outputs include crop exportation. This
nutrient balance not take into account evolution of nutrient storage and removal within soil
and groundwater. These data produced at a 0.5 by 0.5 degrees were downscaled at a 5 by 5
minutes using a simple bilinear interpolation. New data produced in the framework of
PERSEUS (hﬁt;):!fwwwQerseqs«neteuis%teicomem.@hg) would be produced‘ from IMAGE at
5 by 5 minutes and would allow a better estimation of nutrient balance at this spatial
resolution.

4.3.1.2 'Nutrient emissions in natural areas

Processes accounting. for nitrogen emission in natural area are atmospheric
deposition and biological fixation. Atmospheric deposition accounts for different nitrogen
sources including energy-related, biomass burning, agricultural and natural emissions of
nitrogen oxides and ammonia to air (Bouwman et al., 2002). So, emissions within closed-
agricultural and urban area have a strong effect on nutrient emissions within natural area.
Natural nitrogen emissions {Figure 30) range from <1 to 3060 kgN km™ yr’. At the scale of
. the whole Mediterranean drainage basin, theses emissions reach 4.3 10° tN i.e. 35% of the
total diffuse emissions. For the five largest river basins of the Mediterranean Sea, natural
emissions account for 39, 54, 22, 20 and <1% of total diffuse emissions for, respectively, the
Nile, Rhone, Po, Ebro and Moulouya rivers.

For phosphorus, the atmospheric fluxes are negligible with about 0.5 percent of
inputs to rivers (Meybeck 1982). Globally, natural weathering account for 24% of the
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dissolved inorganic phosphorus delivered to the ocean (Harrison et al. 2010), i.e. 26 kgP km™
yr'. We have no data to estimate spatial variation of phosphorus emissions by weathering
within the Mediterranean area.

4.3.1.3 Nutrient emission in agricultural area

Total nitrogen input in agricultural area reach 14.3 10° tN yr* and 1.9 10° tP yr? in
the Mediterranean drainage basin. Manure and fertilizer account for 6.9 and 3.9 10° tN yrt
i.e. 76% of the total nitrogen inputs in agricultural area, and, for phosphorus, 0.7 and 1.2 10°
tP yr™. Atmospheric deposition and biological fixation of nitrogen are 1.9 and 1.6 10° tN yrt,
Deducing crop export, total nitrogen and phosphorus emissions in agricultural area are 12.3
10°tN yr™ i.e. 95% of the total diffuse emission of nitrogen and 0.8 10° tP yr.

Emissions per unit area range from <1 to 26400 kgN km™ yr™ for nitrogen (Figure 31)
and from <1 to 26.5 10° kgP km™ yr for phosphorus (Figure 32). Strongest emissions, for
both phosphorus and nitrogen, are observed in Southern Spain, Northern italia, Western
Turkey, Israel, Lebanon and Syria.

For the five largest river basins, respectively the Nile, Rhone, Ebro, Po and Moulouya,
nitrogen emission in agricultural area are 2.5 10°, 3.5 10° 3.9 10°, 5.0 10° and 1.1 103 kgN
km yr* and phosphorus emissions are 0.12 10 0.07 10°, 0.48 10°, 0.76 10° and 0.06 10°
kgN km™2 yr. '

Several studies confirm this elevated agricultural .emissions and their relation with
water quality. In the Valencia region (Spain), nitrogen emissions range from 15000 to 30000
kgN km™ yr* under vegetables crops (Ramos, Agut & Lidén 2002). In the Almeria region,
nitrate concentration in groundwater is atmost 100 mgN L™ under greenhouses (Thompson
et al. 2007) . More than 20 mgN L™ are measured in groundwater of the Low Almanzora. In
Lebanon, the nitrogen emissions is higher in the Litani valley with atmost 78000 kgN km™2 yr?
under vegetables crops and nitrate concentration in groundwater higher than 38 mgN L™ In
the Po valley, phosphorus emissions in agricultural area reach 11000 kgP km™ yr (Torrent,
Barberis & Gil-Sotres 2007). High nitrate concentration in rivers is always linked with strong
nitrogen emissions due to agricultural practices. However, for nitrate flux, this link is less
obvious as nitrate flux is also greatly controled by spatial change in water discharge.
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4.3.1.4 Nutrient emission by wastewaters

Nutrient emission by wastewaters is 0.6 10° tN yr*and 0.1 10° tP yr’ for the whole
Mediterranean drainage basin, i.e. 5% and 6% of total emissions (including diffuse emissions
in agricultural and natural areas). Emissions per unit area range from <1 to 11 10° kgN km™
yr’* for nitrogen and from <1 to 2.4 10% kgP km™ yr™ for phosphorus. For both phosphorus
and nitrogen, strongest emission rates are located in small basin including large cities (Figure
33, Figure 34). Some large basins of Italy, Northern Maghreb and southwestern Turkey have
emission rates larger than 0.4 10 kgN km™ yr‘1 and 0.1 10 kgP km™ yr'’. For the Nile, Rhone,
Ebro, Po and Moulouya basins, nitrogen emission by wastewaters are 0.03, 0.24, 0.10, 0.75
and 0.03 10° kgN km? yr'1 and phosphorus emission are 0.01, 0.05, 0.02, 0.13 and 0.01 10°
kgP km2yr™.
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4.3.2 Nutrient leaching, storage and removal

Only a limited fraction of the total anthropogenic inputs of nutrient to watersheds is
actually exported by rivers to the coastal zone. This accounts for the net effect of various
biogeochemical processes responsible for temporary or permanent removal from the water
phase (such as biological uptake and biomass production, sedimentation and denitrification
for nitrogen) or removal from the land phase (such as gaseous losses by denitrification and
nitrification, volatilization and storage in permanent vegetation, soils and groundwater).

4.3.2.1 Nutrient leaching, storage and removal within soil and subsoil

Main driver of nutrient leaching from soils to rivers are precipitation or runoff. At the
global, regional scale or for the Mediterranean drainage area, the spatial variability of the
nitrogen retention could be correlated with precipitation or river runoff (Howarth et al.
2006; Billen et al. 2009; Ludwig et al. 2010). The ratio of diffuse source discharged to river as
dissolved inorganic form may be estimated using these conceptual formulations (Dumont et
al. 2005; Harrison et al. 2010): '

CDIN,soil/subsoil =0.94 R

0.04

CDIP,soil/subsoil = _—F
1+ (5gs)

For nitrogen (Figure 35), less than 1% of diffuse source are discharged as dissolved
inorganic nitrogen (DIN) to Southern Mediterranean Rivers. In the Northern Mediterranean
Rivers, this rate increase with more than 10% for Eastern Adriatic Rivers. Eor the Nile, Rhone,
Ebro, Po and Moulouya rivers, it reach <1%, 54%, 10%, 63% and 1%. For phosphorus (Figure
36), diffuse emission of dissolved inorganic phosphorus (DIP) account for less than 10% of
diffuse sources for most basins. For the Nile, Ebro and Moulouya, emission of diffuse source
to rivers is less than 1%. For the Rhone and Po rivers, it reaches 9 and 11%. Regardless of the
nitrogen and phosphorus diffuse emissions, basins of Eastern Adriatic and lonian Seas have
the highest risk of nitrogen and phosphorus leaching from soil to rivers. Because of the
relatively low diffuse emissions of nitrogen and phosphorus in Eastern Adriatic, the flux of
diffuse nitrogen and phosphorus from soils to rivers is low relative to other regions
previously cited, especially in the Northern Adriatic. This vulnerability is increased for
hitrogen as diffuse emissions are the main source of nitrogen discharged to the rivers.
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4.3.2.2 Nutrient storage/removal within reservoir and dams

Lentic water bodies (lakes and reservoirs) have the potential to act as important
sources for nitrogen and phosphorus as it is transported across the landscape because they
offer ideal conditions for nitrogen or phosphorus burial in sediments or permanent loss of
nitrogen via denitrification (Harrison et al. 2008). The Global Reservoir and Dam Database
1.1 (Lehner et al. 2011) compiles reservoirs with a storage capacity of more than 0.1 km?®.
The recent version contains 429 spatially explicit records of reservoirs for the Mediterranean
* drainage basin and gives information in their storage volume. Estimation of nutrient
storage/removal within reservoirs and dams may be estimated usihg calibrated conceptual
formulation at a global scale (Wilhelmus, Bernhardt & Neuman 1978, Seitzinger et al. 2002) :

365-Vres
Cpipres =1 —0.85 - (1 _ g 008073651 )

~0.3677
Zres
CDIN,T@S = 1 - 0.884‘5 * V
res
Ro
7:55 is the average residence time of water in reservoirs (effective reservoir volume
0

divided by average annual discharge, (Figure 37)). Zyes is the average reservoirs depth.
Cpipres and Cpy res are export fractions for dissolved inorganic phosphorus and dissolved
inorganic phosphorus.

For nitrogen (Figure 38), the retention fraction reaches almost 100% for the Nile,
Segura and Almanzora rivers. Retention higher than 30% is calculated for some large basins
of Algeria (Chelif and Macta-Hammam), Tunisia (Medjerba, Joumine, Miliane) and Spain
(Guadalhorce and Guadalfeo). In Spain, this retention fraction is higher than 20% for all large
basins. Retention fraction is higher than 20% in Morocco (Mouloiya), Southern ltalia
(Bradano, Fortore, Flumendosa), in Greece (Meric, Acheloos, Aliakmon), in Turkey (Orontes).
As the only reservoirs with storage capacity higher than 0.1 km® are listed in the Global
Reservoir and Dam Database 1.1, retention fraction for small basins could be much higher
than calculated value.

For phosphorus (Figure 39), the calibrated formulation induces a very low spatial

variation of -retention fraction -and for-most basins the retention fraction reaches the =~

maximum retention fraction of the formulation (i.e.: 85%). Lowest retention fraction
{excluding null value due to no reservoirs or lack of data for small reservoirs) is calculated for
Northern Adriatic including the Po with 60%.
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4.3.2.3 Nutrient storage/removal by water abstraction

Water removed from rivers for human consumption or irrigation and domestic and
industrial use may be returned to the river or lost (consumed) permanently, primarily
through evapotranspiration on irrigated lands and interbasin transfers. Biogeochemical
constituents associated with net, consumptive water use are assumed to be permanently
removed from the river system. So, the fraction of river flux remove consumptively (Caps)
could be estimated from total river discharge at the mouth before (Ry) and after (R) the
implementation of large-scale irrigation and other water withdrawal schemes (Mayorga et
al. 2010): ‘

R
Cabs=1_R_0

Length of discharge data series are often too short for estimate the natural river
discharge before these implementations. Approximation of the natural runoff (Rg) may be
done using conceptual rainfall/runoff model. Here, we used the Pike formulation (see 3.3.1)
to estimate this natural runoff as done in previous studies for the Mediterranean drainage
basin (Ludwig et al. 2009, 2010). Greatest water abstractions are calculated for the Nile, the
Eastern Maghreb and Southern Spain (Figure 40). Less of 10% of natural runoff discharges to
the Sea for the Nile, Segura, Macta and Almanzora rivers. Other significant water abstraction
for large basins is calculated for the Moulouya (77%), Chelif (62%), Ebro (49%) and Orontes
(40%). For other large basin, the calculated water abstraction is lower but reach 9%, 13%
24% for the Rhone, Po and Meric. Summing natural and actual discharges, the water
abstraction reaches 15% of the natural runoff for the whole Mediterranean drainage basin.

The Mediterranean region is one of the most affected regions in the world by
anthropogenic river flow alterations and reservoir management (D6ll, Fiedler & Zhang 20009).
Agricultural demand is the most important cause of this water abstraction. in the Segura, the
total water demand reaches 1.9 km® yr? with 87% for agriculture use (CHS, 2008) while
calculated runoff is only 0.6 km® yr™*. While irrigation has always existed in the Nile delta, its
magnitude has considerably increased, especially since the creation of the Aswan High Dam
in 1965 (Nixon 2003) with a 50% decrease of discharge at the delta head. In the Orontes, a
50% decrease of discharge is observed between a Lebanese gauging station and the Syria
boundary (ESCWA-BGR Cooperation 2012). In Morocco, after the construction of Mohamed
V reservoir, the water discharge at the Moulouya River reduced by about 47% (Snoussi,
Haida & Imassi 2002). Then, nutrient removal or storage due to water abstraction is one of

 the main drivers of spatial change in nutrient flux. Given these processes commensurate

with water abstraction, approximately 15% of the nutrient flux is removed before reaching
the Mediterranean Sea.
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4.3.2.4 Nutrient storage/removal by instream processes

At the global scale, 13% of the nitrogen emissions is removed by river denitrification
(Seitzinger et al. 2006). The denitrification rate is proportional of the average water travel
time within basins. Here, we used a first approximation linking basin area with the dissolved
nitrogen removal (Dumont et al. 2005):

CDIN,instream =1- (00605 : ln(ATea) - 0.04‘4‘3) .

The maximum instream retention rate was calculated for the Nile with 85%. For This
rate ranges from 60 to 65% for the Rhone, Po, Ebro, Moulouya, Meric and Chelif and
approaches 0% for the smallest basins (Figure 41).
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. 4.4 Past change in nutrient concentrations and fluxes

Monitoring programs for large rivers are generally better developed than for small
rivers, and water quality data are more easily available. Another advantage is that large river
basins integrate the variety of human activities at regional scales, making them more
representative than smaller basins. For these reason, we focus in our trend evaluation first
of all at the evolution of the nutrient concentrations in the Rhone, Po and Ebro rivers (Figure
42). For nitrate, concentrations increased steadily from the beginning of the 1970s’s in all
three rivers. Only since the beginning of the 1990s, the values seem to remain at more or
less constant concentrations. The increase was more important in the Ebro and Po rivers
than in the Rhone River. Also, the annual nitrate loads increased on average in all three
rivers. These trends are in good agreement with the situation in other European rivers. At
many sites, annual concentrations are approaching a steady state, after two decades of rapid
increase. On the basis on linear correlation of the loads and time, it can be estimated that
for the 1970s to 1995 period, the nitrate loads increased on average by about 10% per year
in the Ebro River. In the Rhone and Po rivers, this increase was about 4% and 5% per year,
respectively. '

For phosphate, the trends are more diversified. There is also a strong increase of the
phosphate concentrations in the Po, Rhone and Ebro rivers at the beginning of the 1970s,
even more pronounced than in the case of nitrate. But about 10 to 20 years later, this
evolution stops and the values started to decrease again. It is remarkable that in all three
rivers, the phosphate concentrations at the end of the 1990s meet again the values that
have been encountered at the beginning of the 1970s. When taking the mean of the
phosphate loads in the three rivers, one can estimate that phosphate loads from 1975 to
1985 increased on average by about 15% by year. From 1985 to 1995, they decreased again
about the initial value. But the evolution is not completely in phase between the three
rivers, since the start of the decrease is different. This can be seen best when looking at the
phosphate loads. The decline started earliest in the Po river (about 1980), followed than by
the Rhone river (around 1985) and finally the Po river (around 1993). Phosphorus
concentrations in European Union and Accession country rivers generally declined by 30-
40% during the 1990s, with greatest reductions in areas with formerly high phosphorus
concentration. Evolution to better water quality was more rapid in Western Europe than in
Southern Europe.



Table 6 Change in nutrient emissions between 1970s and 2000s (10° t yr™)

Sea Sub-basin N diffuse N point N total P diffuse P point P total

NWE
TYR
ION
ADR
AEG
NLE
SLE
CEN
SWE
ALB
TOTAL

75

2374

201

79

2575

-26
-18
-14

206

-22

313

19

227



4.5Main drivers of change in nutrient concentrations and fluxes
4.5.1 Nutrient emissions

For phosphorus (Table 6), the decreasing trend observed in the European rivers could
be linked with change in phosphorus emissions in the past decades. While increase in
population density was low, point source of phosphorus were largely decreased with the
upgrading of wastewater treatment, cleaner technology in industry and interdiction of
phosphorus use in detergents. The use of phosphorus in fertilizer also decreased due to
adjustments of agricultural practices and increase of the fertilizer costs. In other
Mediterranean countries, the demographic evolution and increase of agricultural area,
induced an increase of diffuse and point emission of phosphorus. In the total Mediterranean
drainage basin, phosphorus emissions increased of 227 10° tP yr'* between 1970s and 2000s.
For nitrogen, we also observed a decrease in nitrogen emission for basins of the Tyrrhenian,
lonian and Adriatic Seas. However, looking evolution of nitrogen flux for the Po River, this
decrease did not induce a decreasing trend for nitrogen flux. This is probably due to the
inertia of the hydrochemical response. For the other Mediterranean regions, we observed an
increase of both diffuse and point emissions of nitrogen. As for phosphorus, these increased
are due to the increase in fertilizer use and population density.

4.5.2 Nutrient storage and removal

As nutrient leaching is controlled by the water discharge within basins, it is likely that
decreasing runoff trends for most of Mediterranean Rivers promote a decrease in the
nutrient flux.

4.6 Budget and future scenarios for nutrient fluxes
461 Scenarios

Four MEA scenarios have been implemented in IMAGE for the years 2030s. Each
scenario represents a possible socioeconomic development of the world in the near future
and is named according to its major characteristics (for a detailed description, see Alcamo et
al. {2006}): Global Orchestration (GO), Order from Strength (0S), Adapting Mosaic (AM) and
Technogarden (TG). GO depicts a worldwide connected society in which global markets are
well developed. Supranational institutions are well placed to deal with global environmental
problems. However, their reactive approach to ecosystem management makes them_
vulnerable to surprises arising from delayed action or unexpected regional changes. OS
represents a regionalized and fragmented world concerned with security and protection,
emphasizing primarily regional markets and paying little attention to common goods, and
with an individualistic attitude toward ecosystem management. AM depicts a fragmented

83|Page



Table 7 Diffuse emissions of nitrogen by sea sub-basin for 2000s and 2030s

Sea
sub-
basin

NWE
TYR
ADR
ION
AEG
NLE
SLE
CEN
SWE
ALB
TOTAL

Table 8 Diffuse emissions of phosphorus by sea sub-basin for 2000s and 2030s

10° tN yr™*

2000s 2030TG 2030 AM 2030GO 20300S
1072 846 928 1051 1032
209 190 223 272 251
794 594 666 773 760
128 101 116 142 135
1002 893 1006 1192 1092
452 449 459 533 484
7778 9019 8157 9963 9126
315 367 380 415 388
294 337 355 376 365
287 391 437 436 454
12330 13187 12727 - 15153 14088

3
Sea sub-|10°tP

basin
NWE
TYR
ADR
-ION
AEG
NLE
SLE
CEN
SWE
ALB
TOTAL

2000s
85
26
35
12
92
52
385
25
37
27
834

1
yr
2030 TG 2030 AM 2030 GO 20300S
86 90 108 105
29 32 42 39
80 85 100 103
13 15 19 18
110 116 145 129
70 72 82 74
802 500 846 703
36 36 43 39
48 50 54 52
49 53 52 57
1323 1049 1489 1318

kgN km?yr*

2000s
3585
2090
3350
1984
3299
2889
2537
1261
3281
1800
2609

kgP km™2 yr*
20005

284 288
260 290
401 338
186 202
303 362
332 447
126 262
100 144
413 536
169 307
176 280

2030 TG 2030 AM 2030GO 20300S

2829
1900
2506
1566
2940
2870
2942
1469
3761
2452
2791

3103
2230
2810
1798
3312
2934
2661
1521
3962
2741
2693

3515
2720
3261
2201
3924
3407
3250
1661
4197
2735
3207

3451
2510
3206
2093
3595
3093
2977
1553
4074
2848
2981

2030 TG 2030 AM 2030 GO 20300S

301
320
359
233
382
460
163
144
558
332
222

361
420
422
295
477
524
276
172
603
326
315

351
390
435
279
425
473
229
156
. 580
358
279
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world resulting from discredited global institutions. It sees the rise of local ecosystem
management strategies and the strengthening of local institutions. Investments in human
and social capital are geared toward improving knowledge about ecosystem functioning and
management. TG finally depicts a globally connected world relying strongly on technology
and on highly managed and often engineered ecosystems to deliver needed goods and
services. Overall, ecoefficiency improves, but it is shadowed by the risks inherent in
large-scale human made solutions. Note that in two of the scenarios, societies generally
have a proactive approach to environmental problems (TG, AM), whereas a reactive
approach is dominant in the two other scenarios (GO, 0S).

| 4.6.1.1 Evolution of nutrient diffuse emission

In 2000s, the total diffuse emission of nitrogen within the Mediterranean drainage
basin is about 12.3-10° tN yr'’. Due to the size of the Nile basin, SLE account for 63% of this
total emission. Nitrogen emissions for Northern Mediterranean basins account for 30%. Per
unit area, the strongest emissions are in the Northern Mediterranean drainage area, with
more than 3000 kgN km™ for NWE, ADR and AEG. Lowest emissions per unit area are
observed in CEN. Whatever the scenario, we have an increase of diffuse emissions in 2030s,
ranged from 3% (AM) to 23% (GO) for the whole Mediterranean drainage area. In contrast,
for the Adriatic drainage area, these emissions decrease for the four scenarios. For the TG
scenario, decrease is calculated for all the Northern Mediterranean sub-basin. Per unit area,
emissions within SWE drainage area should be the strongest in 2030s and ranged from 3800
to 4200 kgN km™.

For phosphorus, the diffuse emission in 2000s is about 843 103 tp yr. SLE accounts
for 46% of these emissions and Northern Mediterranean basins for 43%. As nitrogen,
emission increase for the four scenarios, with an increase ranged from 26% (AM) to 79%
(GO). In the Northwestern, emissions are in a steady state or increase slowly. In the
Northeastern and Southern Mediterranean Sea, the emission increase is stronger.
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Table 9 Point emissions of nitrogen by sea sub-basin for 2000s and 2030s

Sea sub-
basin

NWE
TYR
ADR
ION
AEG
NLE
SLE
CEN
SWE
ALB
TOTAL

10* tN yr* kgN km2 yr™*
2000s 2030 TG 2030 AM 2030 GO 2030 0S | 2000s

81 71 78 76 77 271 237
42 45 45 46 44 420 450
105 93 92 99 87 443 392
12 16 16 17 15 186 248
83 120 118 119 115 273 395
41 59 63 57 62 262 377
115 324 233 302 232 38 106
26 44 43 41 43 104 176
58 85 94 80 94 647 949
33 59 64 55 66 207 370
596 916 846 892 834 126 194

261
450
388
248
388
403
76
172
1049
401
179

Table 10 Point emissions of phosphorus by sea sub-basin for 2000s and 2030s

Sea  sub-|10°tPyr?

" basin 2000s 2030TG 2030 AM 2030GO 2030 OS
NWE 16 11 12 11 © 12
TYR 7 8 8 8 8
ADR 18 15 16 16 15
ION 2 3 3 3 3
AEG 117 25 25 24 24
NLE 8 12 13 12 13
SLE 25 66 48 61 48
CEN 5 9 9 8 9
SWE 12 17 19 16 19
ALB 7 11 13 11 13
TOTAL 118 176 164 170 163

2000s 2030TG 2030 AM

kgP km? yr*
54 37
70 80
76 63
31 47
56 82
51 77
8 22
20 36
134 190
44 69
25 37

40
80

68

47
82
83
16
36
212
82
35

254
460
418
264
392
364
99

164
893
345
189

2030 TG 2030 AM 2030 GO 2030 0S

257
440
367
233
379
396
76
172
1049
414
176

2030 GO 2030 0S

37
80
68
47
79
77
20
32
179
69
36

40
80
63
47
79
83
16
36
212
82
34
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4.6.1.2 Evolution of nutrient emission by wastewaters

For the four scenarios, we obtain an increase in point source emissions of nitrogen
and phosphorus in 2030s. For nitrogen, future emissions range from 0.83 10° tN yr' (0S) to
0.92 10° tN yr™* (TG). For phosphorus, emissions are ranged from 0.16 to 0.18 tP 10° tP yr™.
These increases are explained by the strong demographic growth for the countries of North
Africa in the coming decades. Especially for SLE, including the Nile, emissions are between 25
and 30% of the emissions for the whole Mediterranean drainage area. For NWE and ADR,
emissions decrease with the four scenarios for both phosphorus and nitrogen. Expressed
per unit area, the highest nitrogen emissions are between 0.95 10° and 1.05 10° kgN km for
SWE. The low values observed for SLE must be weighted by the location of emissions.
Indeed, a large part of point source emissions of nitrogen is due to population within the
Nile delta. Emissions in. ADR and TYR remain relatively high with values between 0.37 10°
and 0.46 10° kg N km™.
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Table 11 Fluxes of dissolved inorganic nitrogen (10° tN yr*) in 2000s and 2030s scenarios

Sea sub- | 10% tNyr* kgN km yr*

basin 2000s 2030TG 2030 AM 2030GO 20300S|2000s 2030 TG 2030 AM 2030 GO 2030 0S
NWE 165 119 131 146 145 552 398 438 488 485
TYR 62 50 = 57 66 62 620 500 570 660 620
ADR 257 192 210 238 243 1084 810 886 1004 1025
ION 36 30 32 37 35 558 465 496 574 543
AEG 126 122 127 138 133 415 402 418 454 438
NLE 8 88 90 93 92 537 562 575 594 588
SLE 19 26 28 25 28 6 8 9 . 8 9
CEN 18 28 27 27 27 72 112 108 108 108
SWE 37 47 51 45 - 51 413 525 569 502 569
ALB 17 22 23 21 24 107 138 144 132 151
TOTAL 821 724 776 836 840 174 153 164 177 178

Table 12 Fluxes of dissolved inorganic phosphorus fluxes (10° tP yr} in 2000s and 2030s scenarios

Sea sub- | 10°tP yr™ kgP km™ yr™

basin 2000s 2030TG 2030AM 2030GO 20300S|2000s 2030 TG 2030 AM 2030 GO 2030 0S
NWE 9.1 6.5 7.2 6.9 7.2 30 22 24 23 24
TYR 5.5 5.2 53 55 5.2 55 52 53 55 52
ADR 101 86 8.8 9.1 8.6 43 36 37 38 36
ION 2.1 2.4 2.5 2.6 24 33 37 39 40 37
AEG 192 252 25 25.1 24.4 63 83 82 83 80
NLE 5.7 7.8 8.3 7.5 8.2 36 50 53 48 52
SLE 5.6 7.4 8 6.9 8 2 2 3 2 3
CEN 3.8 6.2 6.2 5.8 6.1 15 25 25 23 24
SWE 5.8 7.9 8.9 7.3 8.9 65 88 99 81 99
ALB 2.9 4 4.6 3.7 4.6 18 25 29 23 29
TOTAL 70 81.3 84.6 80.5 83.5 15 17 18 17 18




4.6.2 Model framework and future budgets

For simulation of the future nutrient fluxes to the Mediterranean Sea, we used the
model Global NEWS 2 which has been recalibrated on the basis of our data. Global NEWS 2 is
a global, spatially explicit, multi-element and multi-form model of nutrient exports by rivers
(Mayorga et al. 2010). NEWS distinguished point sources, which include wastewater
emissions from households and industries, and non-point or diffuse sources, including
loading of rivers from agricultural land use and natural ecosystems. The NEWS formulation
for dissolved inorganic nitrogen (DIN) and phosphorus (DIP) is:

FX,river = Laps* CX,instream ’ CX,res ' (CX,soil/subsoil ' (FX,diffuse + FX,weathering) + FX,point)

All components have been previously described (see 4.3.2). Fx weathering 1S set to 0
for DIN and 26 for DIP. For DIP, Cx instream iS Set to 1. When water discharge and nutrient
concentration are available for actual period, modeled values for 2030s are corrected by the
ratio between observed and modeled values for actual period and observed values were
used for actual period when available.

The total DIN flux for 2000s is about 821 10° tN yr? (Table 11). 31% are discharged in
the Adriatic Sea, 20% in the Northwestern Mediterranean Sea and 15% in the Aegean Sea.
The Northern Mediterranean Rivers discharge 89% of the total DIN flux. However, for the
Nile the modeled DIN flux is zero. As nitrate concentration is about 7 mgN L™, the DIN flux
for the Nile should be stronger than 105 10° tN yr™. Then, the total DIN flux is probably
closed to 1 10° tN yr™. For DIP, the total flux to the Mediterranean Sea is about 70 10° tP yr™
(Table 12). 27% of the DIP flux is discharged to the Aegean Sea. DIP flux in the Northwestern
Mediterranean Sea and the Adriatic Sea are 13 and 14% of the total DIP flux. The Northern
Mediterranean Rivers discharge 74% of the total DIP flux.

For 2030s, we computed a decrease in DIN fluxes with the TG (-12%) and AM (-4%)
scenarios and an increase for the GO (+2%) and OS (2%) scenarios. For DIP, we computed an
increase of fluxes for the four scenarios ranged from +16% for TG and +21% for AM.
Whatever the scenario, DIN and DIP fluxes should be lower in the Northwestern
Mediterranean Sea and the Adriatic Sea. In contrast, an increase of DIN and DIP fluxes
should occur in the Eastern and Southern Mediterranean Sea.
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Chapter 6 - Conclusions and perspectives

This inventory has allowed building the most complete dataset on the Mediterranean
basin for nutrient concentrations and water discharge in rivers. These data allow estimation
of average river nutrient fluxes for many rivers of the Mediterranean basin in 2000s.

However, there are significant gaps. Particularly for Southern Italy, Eastern Adriatic
Sea and Greece, we do not have water discharge data after 2000s when we have values for
nutrient concentrations in subsequent years. So, nutrient fluxes calculated for these rivers
with older values for water discharge could not depict actual values if significant climatic or
anthropogenic change occurred in the last decade. For Turkey, we lack data for both nutrient
concentrations and water discharge. Data exist but only the inter-annual values are
available. It is the same for Eastern and Southern Mediterranean where times series for
water dischargé are no more updated and only few data for nutrient concentrations are
available in the scientific literature. '

The two main gaps to assess global nutrient inputs in the Mediterranean Sea are
water discharge and nutrient concentration data for the Turkish rivers and the Nile. Despite
the very strong decline in water discharge since the construction of the Aswan Dam, the
strong population density and intensive agriculture in the delta induce high concentration of
nutrient emissions.

To assess regional nutrient inputs, we need water discharge data from 2000s for the
Adriatic and Aegean Seas basins and the northern Africa basins. It is necessary to have data
of nutrient concentrations and water discharge for nearby or similar stations near the river
mouth.

Otherwise many data collected via previous datasets cannot be used to assess a
nutrient flux or to consider the value as representative of nutrient inputs in the sea. This is
especially true for the Mediterranean where many cities are found along the coast and
water withdrawals or urban sewage near the sea can have a significant impact on the basin
nutrient budget.

Modeling allows us to estimate the water discharge and nutrients fluxes for rivers
without observations for nutrient or water discharge data. While models produce accurate

_ resglfgs fqr water dischrarge apd nitrogen rflrurx,” it is important to improve models for

bhosphorus.

Trend analysié highlight decline of water discharge in the last 50 years. This decline






capacity and-irrigated area are also a driver of this decline. Different climate scenarios show
that regardless of change in water use, the water discharge should continue to decline in
the coming decades. Demographic growth and intensification of agricultural practices in
eastern and southern Mediterranean Sea should induce a larger decrease in this water
discharge. ‘

In the Southern Mediterranean Sea, the river water discharge account for only 7% of
whole Mediterranean Rivers (3% excluding the Nile). These low inputs suggest a low impact
of changes in nutrient fluxes compared to the total river discharge. The Nile is a specific case
as it accounts for almost 4% of the water discharge by rivers and as nutrients emissions are
very strong closed to the river mouth. Nitrate flux from the Nile is about 105 10° tN yr™, i.e.
11% of total inorganic nitrogen discharge.‘ Given the future trends in agriculture and
population for Egypt, the Nile should remain a major river on for nutrient discharged to the
Mediterranean Sea.

In the Northwestern Mediterranean Sea and Northern Adriatic Sea, despite low
trends for nutrient emissions within basins regarding the other Mediterranean regions, their
impact should be stronger as the higher precipitation increase the nutrient leaching from soil
to the river mouth. Between these two regions, around the Aegean Sea and Northern
Levantine Sea, we have an intermediate situation with a relatively large demographic and
agricultural growths and moderate leaching rate of nutrient. Among the four scenarios
proposed, Technological Garden is the scenario limiﬁng most of the nutrient export with a
decreasing flux of inorganic nitrogen and a low increase of phosphorus flux.
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